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Analytic electrical-conductivity tensor of a nondegenerate Lorentz plasma
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We have developed explicit quantum-mechanical expressions for the conductivity and resistivity tensors of
a Lorentz plasma in a magnetic field. The expressions are based on a solution to the Boltzmann equation that
is exact when the electric field is weak, the electron-Fermi-degeneracy pardneterand the electron-ion
Coulomb-coupling parametdr/Z<1. (I' is the ion-ion coupling parameter adis the ion charge state.
Assuming a screenedrlélectron-ion scattering potential, we calculate the Coulomb logarithm in the second
Born approximation. The ratio of the term obtained in the second approximation to that obtained in the first is
used to define the parameter regime over which the calculation is valid. We find that the accuracy of the
approximation is determined Hy/Z and not simply the temperature, and that a quantum-mechanical descrip-
tion can be required at temperatures orders of magnitude less than assumed by Bpy&ies of Fully lonized
Gases (Wiley, New York, 1962]. When the magnetic field=0, the conductivity is identical to the
Spitzer result except the Coulomb logarithm Alp=(In x;—3)+[(2Z&/Amw?)(In x;—In2*3)], where
X1=2Mg ¢ M7, Mg is the electron mass,.;=(7kgT/me)*2, kg is the Boltzmann constari,is the tempera-
ture, \ is the screening lengtt, is Planck’s constant divided byr2 ande is the absolute value of the electron
charge. When the plasma Debye length is greater than the ion-sphere radiaswe assumex=A\p;
otherwise we seh=a. The B=0 conductivity is consistent with measurements wtgr1l, =2, and
I''Z=1, and in this parameter regime appears to be more accurate than previous analytic models. The mini-
mum value of InA; whenZ=1, =2, andl'/Z=<1 is 1.9. The expression obtained for the resistivity tensor
(B#0) predicts thatyp, /7, (wheren, andz, are the resistivities perpendicular and parallel to the magnetic
field) can be as much as 40% less than previous analytic calculations. The results are applied to an idealized
17-MA z pinch at stagnation.
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I. INTRODUCTION X 10°)Z? K, depending on the constant assumed, wiZeie

the ionization charge stafé,8,10,15,26,40,57

Electrical conduction in a plasma has been an active sub- To include electron-diffraction effects in a self-consistent
ject of theoretical research for over 50 years. In pioneeringnanner, a number of quantum-mechanical calculations have
studies, Lorentf1], Chapman, Enskog, and Cowlif@],  been performed. These studies often expand the electron dis-
Marshak [3], Cowling [4], Landshoff[5,6], Conwell and  tribution function in terms of Soniné.e., generalized La-
Weisskopf{ 7], Cohen, Spitzer, and Routf@], Spitzer[9,10,  guerre polynomials. Kivelson and Duboif24] obtain the
and Spitzer and Hen [11] developed classical expressions conductivity from a one-Sonine-polynomial solution to
for the electrical conductivity. These seminal results havejuantum kinetic equations; Williams and DeWB6] present
been generalized by various methdd2-92. In the pres-  one-, two-, and three-Sonine-polynomial results. Boercker,
ence of a magnetic field, the conductivity is a second-raniRogers, and DeWitf50] use a correlation-function expres-
tensor; calculations of the tensor elements are presented #jon for the collision frequency to develop a one-Sonine con-
Refs. [2,4,5,9,10,12-17,19-21,25-27,30,31,33-35,38—41ductivity. Ichimaru and Tanakgs9] and Kitamura and Ichi-
43,45,52,55,57,58,61,74,77,80-82,817,88 maru [78] obtain a one-Sonine solution by considering the

The conductivity is a function of momentum transfer in scattering of electrons in the random potential fields of the
scattering events between electrons and other particles. Mugbns. When the one-Sonine expressi¢®4,36,50,59,7Bare
of the early work assumes that electrons follow classicatorrected as described by Landshd®,6] to produce
scattering trajectories. For electron-ion scattering, the classinfinite-Sonine results, they are, in the high-temperature low-
cal Coulomb logarithm is a function of the electron impactdensity limit, identical, and are dependent on scattering cal-
parameter that results in an electron deflection of 90%ulations performed in the first Born approximation.
[2,8,10,11. Quantum-scattering effects are often introduced We use here a more direct approddhB,7,12,13,57that
by correcting the classical result: the 90° impact parametegan be applied to a Lorentz plasma. The method is analytic
Pgo is replaced by the electron de Broglie wavelength multi-and self-consistently includes quantum-scattering effects.
plied by a constant when the product is greater tign  Following Lorentz[1], Marshak{3], Conwell and Weisskopf
[5,8,10,15,26,40,97 (Since the de Broglie wavelength [7], Brooks and Herring12,13, and Lee and Morg57], we
ocug1 wherev, is the electron speed, amoocvgz, quan-  develop in Sec. Il an exact solution to the linearized Boltz-
tum effects become important at high temperajuire such  mann transport equation for a nonrelativistic nondegenerate
conductivity models the transition from classical to quantumplasma in a weak electric field. We show that the Lorentz
scattering occurs between (X10°)Z? and (5.8 model, which assumes the ions are infinitely massive, is ap-
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plicable to plasmas with finite-mass ions when the electron kT 2mekp T 2mekg T
and ion temperatures are approximately equal. We assume @EE—F: W23 h2(37722n-)2’3>1’ 1)
electrons are scattered in binary collisions by a statically € '

screened (?oulomb poteqtial, and .that_ the scrgeni_ng lengtfinereo is the electron-Fermi-degeneracy paramgsar78,
equals the ion-sphere radius when ion-ion coupling is strong. s the Boltzmann constanty, is the electron mass, is
The Coulomb logarithm is obtained in the second Born appjanck’s constant divided by n, is the electron number
proximation. We take into account the energy dependence Qfensity, n; is the ion number density, anfi=n./n; is the
the Coulomb logarithm and evaluate it in closed form. Thejonization charge statéEquations are in cgs-Gaussian units
conductivity thus obtained differs from previous analytic re-throughoutt At an electron density of £ cm 3, Eg
sults [1-18,20,21,23,24,26,29-31,33,35-41,43,46,47,49,5350.36 eV (4.X 10° K).
54,56,57,59,61,62,64,66—73,76—78,80,81,86,8hd com- To calculate the conductivity, we determine the steady-
plements numerical quantum-mechanical calculations thagtate current density as a function of electric field in the
are valid over a wider range of plasma parametersveak-field limit. The current densify=j.+j; wherej, andj;
[21,23,25,28-30,32,33,36,42,44—-60,62,63,65,66,68,69,71-are the electron and ion current densities, respectively. We
81,83-92. evaluate the conductivity in the reference frame where the
In Sec. Il we present explicit analytic expressions for theion-fluid velocity equals zero; hendgg=0 andj=j,. The
conductivity and resistivity tensors of a plasma with a den-current densities and field can be readily transformed to other
sity gradient and a magnetic field. Because we calculate thigzames. The results developed in this section are, of course,
Coulomb logarithm in the second Born approximation anddirectly applicable whei<j.. This is a reasonable approxi-
take its energy dependence into account, we obtain resultsation, for example, in the frame where the total fluid mo-
that differ from previous analytic expressiorhe results mentum equals zero, since in this cdgé=(Zmy/m;)|j|
presented here neglect magnetic-field effects on the electror<|j |. The current density=j, is calculated from the elec-
ion scattering cross section; such effects are addressed lan distribution functionf .

Daybelge[34], Yakovlev[52], Hernquist[55], Potekhin and We assumd, satisfies the Boltzmann transport equation
Yakovlev[80,81,87,88 and Geller and Weisheli82].) [98-10Q,
In Sec. IV we show that the validity of the Boltzmann
collision term, the scattering-potential model described in dfg ofe e _ ofy of,
Sec. Il, and the Coulomb logarithm are dependent on the WﬂLVe'W—m—e 'E:W ) (2

electron-ion Coulomb-coupling parameter. Assuming the collisions

Coulomb logarithm is valid when the contribution from the heref — f is the absol lue of the el
second Born approximation is small, we find that a quantumY/€"€'e= e(t',r,;]/e), Iels t ?'al SO l_“ﬁ va Iue o ; ee ectlron
mechanical description can be accurate at temperatures dgiharge, anc is the electric field. Without loss of generality,

ders of magnitude less than assumed previousl)Ve aSSUME=E,e, whereg, is the unit vector in the di-
[5,8,10,15,26,36,37,40,57 rection. For the discussion in this section we assume that the

Il with the Magnetic field equals zero. The expression on the right-hand

In Sec. V we compare the results of Sec. , . o . :
Spitzer conductivity model, the more-general quantum-s'de of Eq.(2) is the collision term, i.e., the time rate of

mechanical conductivity model developed by Potekhinchange offe due to collisions. . _
Baiko, Haensel, Yakovlev, and Kaminkgg0,81,83,86—8B For a two-component plasma, the collision term is the
and measurements performed on shock-heated @884 ~ SUM of two expressions: one due to electron-electron colli-
and ohmically heated aluminufi®5—97. We demonstrate sions and the other to electron-ion collisid®8,104. In this
that there is no choice for the transition temperature in th?@P€r we assume the plasma is Lorentzian; i.e. that electron-
Spitzer model that can bring it into agreement with the mea€l€ctron collisions can be neglected and the ion nmass
surements. The results also appear inconsistent with discug:Me [1,2,5,6,8,10,11,101(As described by Blatt102] and
sions in Refs[66,69,89,90 which suggest that for a singly others, the electron-ﬂwd momentum does not change.m an
ionized plasma the Born approximation is not valid for tem-€lectron-electron collision. However, the electron velocity is
peratures much less than X10° K. We find instead that randomized, which increases the electron-ion scattering
the accuracy of the Born approximation is determined by thdrobability and decreases the conductiyityhe effect of
electron-ion Coulomb-coupling parameter, and not just th&lectron-electron collisions on the conductivity is a function
temperature. An example of the applicability of the results i2f Z and ©. In the nondegenerate limit®)>1), electron-
given in Sec. VI, where we estimate the resistance of afl€ctron collisions reduce the conductivity by 42% wien
idealized 17-MA tungstea pinch at stagnation. =1; whenZ =16, the reduction is 8%5,6,10,11,6]. Due to

the Pauli exclusion principle, these collisions become less

significant as® is decreasef{53,67,73,89,9D According to
Ref. [90], whenZ=1, T=10* K, and n,=10"cm 3 (©
=51), electron-electron collisions reduce the conductivity

We consider a nonrelativistic two-component plasma conby ~20%; whenZ=1, T=10* K, andn,=10? cm 3 (©
sisting of electrons and ions at the same temperafuide  =2.4), they have less than a 3% effect. Hence electron-
assume the electrons are nondegenerate; i.e., the electrelectron collisions can be neglected when eitherl or ©
thermal energy is much greater than the Fermi en&rgy <50.

Il. THEORETICAL SCALAR CONDUCTIVITY (B=0)
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Considering only electron-ion collisions, the collision to be a function of the absolute magnitude but not the direc-

term become$100] tion of v, and is to be determined from Eq&) and(5)—(7).
When @f./dt)=(df./dr)=0, Eqgs.(2), (6), and(7) give
of
e = [rawnon er iy er
collisions fo=feot+ me Ezm =feo— kB_T E, feoles- (8)
d0 i
—fe(Ve)fi(vi)]g a; dQdv;, (3)  combining Egs(5)—(8), noting thafve| =|v.|, and using the

relation[1,3]
where f; is the ion distribution functiony, andv, are the ,
electron,velocities before and. aftgr an elegtron—ion collision, 1— Vez _ 1—cosd —sin 9 cose tand, 9)
v; andv/ are the corresponding ion velocitieg=|g|=|Vv, Vez
—vi|, and do;/9Q is the differential cross section for
electron-ion scattering frong to g’. The differential solid
angledQ =sin9ddde, whered is the angle betweeg and

where ¢ is the angle betweew, ande,, we obtain

g’, ande is the azimuthal scattering angle. The integration is (Ve)= (10)
over all angles and velocities. Equati¢8) assumes elastic NiveQei

scattering(i.e., |g|=|g’|) and that there is only one ion spe- )

cies. (Generalizing to several ion species is straightforward QeiEf Trfﬂ-(l_COS’l?) ﬁaeiSinﬁdﬂd(p. (11)
[53,100.) o Jo 90

Because we assume that the electron and ion temperatures
are equal,mg|ve|?=m|v;|? for characteristic values of the (Without loss of generality, we have choseto be the angle
electron and ion velocities. Hence between the plane formed by andv, and the plane formed
by v ande, [1,3].) Qg is the cross section for momentum
transfer from electrons to ions. Equatiof®, (8), (10), and
(11) are an exact solution to the Boltzmann equation for a
nondegenerate Lorentz plasma in the weak-electric-field
Since[as indicated by Eq(4)] the ion momentum is typi- limit. The solution is identical to that developed by Lorentz
cally much greater than that of an electron, we can assumé], Marshak[3], and Conwell and Weisskop¥], and used
fi(v/)~f(v;). Since the characteristic electron speed isby Brooks and Herring12,13 and Lee and Mor¢57].

m;
vl <Ivel <] @
e

much greater than the ion spedsv.=|ve|. Consequently ~ Definingj=j.=je£; to be the current density in the di-
Eq. (3) can be simplified as rection of the field, we have
df e , 00 g A R R f q 12
— =niJ [fe(ve) = fe(Ve) ve—g-dQ.  (5) je=—e| | | fevedveduede,. (12
collisions

Equation(5) is identical to that developed by Lorenz], ~ COMPining Eqs(7), (8), (10), and(12) we find

Marshak[3], and Conwell and Weisskop#], who assume
infinite-mass ions. Since Ed4) is most correct wherv,|
=|vi|(m;/mg) 2 Eg. (5) is most applicable to plasmas with \yhere
finite-mass ions when the electron and ion temperatures are
approximately equal. e (= (= (= fo )
We assume that the electric field is sufficiently weak that 0= — — f_ f_ J_ 2.0 Ve dvexdve,dve,. (14)
fo is only slightly perturbed from its equilibrium value. MBIl e Teel
Hence we look for a solution to Eq&2) and(5) of the form

jez=0E,, (13

The electron-ion interactions are accounted for in the
momentum-transfer cross sectiQy,; .

fo=foo— T(Vo)— =feotfer, (6) To calculateQ,;, we assume each electron is scattered by
collisions a screened Coulomb potential centered on a fixed ion,
where zé? —r
V(r)y=——exp —|. (15
3/2 2 2 2 r A
P Me —Mg(vg,tvg,Tug) @
eo="e 2mkgT ex 2kgT Herer is the distance from the ion scattering center arid

a screening length. Following Ref&7,74,103,104we set
is the Maxwell-Boltzmann distribution functioff¢;| <feg,

and the velocity components in E¢7) are defined byv, o [[{4mne?\ (4mnZ%?\ |

- ; . N=Ap= when Ap=a,
=Ve&t U8 TUL. (&, €, ande, are unit vectors in kgT kT

thex, y, andz directions) The relaxation timer is assumed (16
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4 -13 [28,51,74,78,10b Equations(16)—(18) can be combined to
A=a= §7rni) when A\p=<a. (17) give
2
\p is the plasma Debye length aads the ion-sphere radius. = Z a . (19)
As demonstrated in Ref$28,51,103,105—-109 the as- 3(Z+1)\\p

sumption of Debye screening becomes invalid when the ) N _
plasma ions are strongly coupled; i.e., when the ion-iorffénceAp=a in the transition region between weak and

Coulomb-coupling parametédi>1, where strong couplind28,103. , o
Assuming the electron-ion interaction potential given by
(Ze)?> (4 13(ze)? Eq. (15), Dalitz [110] calculates the quantum-mechanical
= aksT —lg3 ™ kgT (18) scattering amplitude of a nonrelativistic electron in the sec-

ond Born approximation. Using this result, we obtain the
I' is the ratio of the characteristic ion-ion Coulomb- differential electron-ion scattering cross sectian,;/J{) to
interaction energy to the ion thermal energy orderZ3e®,

doei Z%e*y? N Z3e%y4 ‘ xXa 20
o 4m§vé(l+x2a2)2 ﬁmgvga(l+)(2a2)(4+4X2+X4a2)1/2arc an(4-|—4)(2—|—)(4a2)1/2 ' (20
|
where 47Z2%e* 1 2
6= 2,8 |n(1+X2)l/2_(§ 11 2”
Y=2K\, (21) eVe X
+87723e6 (4+4x?) . 4+4x%+ M\ 12
_ Mele 22 AMg [(4+3x%) T\ 4+ax?
h 1
B X2 |n(l+)(2)1/2 (25)
9 (4+3x?)
azsinE, (23

(WhenZ=1 and\=\p, Eq.(25) is identical to Eq.(6.11)
. . . ! in Ref. [54] except the sign before the term proportional to
and \ is the screening _dlstance deflned_by Eﬂq§). The e in Ref. [54] is incorrect.Q,; is given to order® in Eq.
redu.ced mass |s.approxm_1ated_m§. (The differential cross (7.64 of Ref. [62]; however, this expression also has the
sectiondo;/d{) is also given in Ref[111]; however, the j,cqrrect sign before the® term; in addition, thee? term
sign before the second term on the right-hand side of Eqygeg not include one of the two contributions obtained in the

(10.136 in Ref. [111] is incorrect. We expect on physical go-0nd Born approximation, and the contribution obtained in
grounds that the second term on the right-hand side of Eq o third)

(20) is positivg for an gttractive potentia!, and nggative yvhen Since(as we shall shoyy> 1, we can express E5) as
the potential is repulsive Equation(20) is consistent with

scattering amplitudes presented in R¢8,111-11% It ap- 4772
pears that the result obtained in the first Born approximation Qei=———7InA(ve), (26)
[the first term on the right-hand side of EQQ)] was origi- Meve

nally given by Wentze[116].

Equation(20) can be simplified by noticing that the arc- Where
tangent argument has a maximum value of8 at y=2%?
anda=1 [37]. Hence to within an erro=4% we can write INA(vg)=(Iny— 1)+ 2Z¢ (Iny=In2*3| (27

)\mevz
Xa X«

4+4X2+X4a2]1/2~ [4+4X2+X4a2]1/2-

arctar‘[ (24

The error due to approximating ER5) as Egs.(26) and
(27) is less than 1% wher=10 and (Ze?/Am?2)=<0.5.
Furthermore, as shown at the end of this section, the assumgFhe quantity Zezl)\mevﬁ is the ratio of the characteristic
tion ®>1 [Eq. (1)] implies that characteristic values gpfare  electron-ion potential energy to the electron kinetic energy.
much greater than 1. Whep=10, the error introduced by Equation(27) is consistent with the approximation f@;

Eq. (24) is <0.3%. given in Ref.[37].
Combining Eqgs(11) and(20)—(24), and making the sub- Combining Eqgs.(7), (14), and (26) gives the electrical
stitution sirf(9/2)=(1— cos9)/2, gives[117] conductivity:
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[ o e

(28)
To evaluate this integral, we note that the function
vgexp(—n”levg/ZkBT) is peaked, and find that its maximum
value occurs ab¢;=(7kgT/mg)Y2 [There appears to be a
misprint in Ref. [7], where this speed is given as

7
Ue

NA(vg) X

712
me

T 32m)7Z A (kgT) 2

—mevZ
ke T

o

(6kgT/my)Y2.] We use here the subscript 1 because othe

values of the electron speed, labeled 2 and 3, are defined
Sec. lll. Wheny=2k{\>1, wherek,;=mgv¢; /%, the func-
tion InA(vg) is slowly varying in the vicinity ofve,, i.e.,
over the interval ofv, that contributes most to the integral.
In this limit we can approximate by assuming that IA(ve)

is constant and equal to its valuewt=v¢; [7], which we
label as InA;. Hence

o 2(2kgT)*? -
T Tz ZmPin A, (29
where
|nAlE(|nX1—%)+ m(lﬂ){l—mzllm)}, (30)
2MyU g1\
Xi=2kih = (3D
TkgT\| 2
Ve1= Me . (32

The two terms on the right-hand side of Eg0) are obtained
in the first and second Born approximations,
respectively. Equatiori29) is identical to the conductivity
of a nondegenerate Lorentz plasma given
Refs.[2,3,5-7,10-13,15,26,57,8@&xcept that the Coulomb
logarithm defined by Eq930)—(32) differs from those ob-
tained previously.

It is often convenient to express the quantities\jnand
x1 in terms ofZ, ', and ®. WhenI'<Z/3(Z+1), then\
=\p and we have

in

[12(Z+1)I3]Y2
|nA1:(|nX1_%)"’{Wz—(lnxl—ln?”?‘) ,
(33
73377.2 1/6 25/3 1/2 0 1/2
X1:2kl)\D:(T) 711 (F) . (34
WhenI'=2/3(Z+1), then\=a and
1 2r 413
INAy=(nx;—3z)+| 7= (Inx,=IN2") 1, (39
7334772 1/6
x1=2kia=| — ) zY3e 12, (36)

PHYSICAL REVIEW E 66, 046417 (2002

As asserted earlier, we see from E¢34) and (36) that as-
suming ®>1 implies x;>1, whether\=\p or A=a.
(When®=2, y,=10.2.)

Ill. THEORETICAL CONDUCTIVITY TENSOR  (B#0)

The results of the preceding section can be generalized to
obtain explicit analytic expressions for the electrical conduc-
tivity and resistivity tensors of a plasma with a density gra-
Hient and a magnetic field.

N we again work in the reference frame where the ion-fluid
velocity equals zero. The results given in Secs. Il A and
II1B are also directly applicable whejj;|<|j|, which is a
good approximation in the frame where the total fluid mo-
mentum equals zero. This is often the case in a steady-state
system. However, the results of these sections must be used
with care. For example, we consider a plasma with no pres-
sure gradientskE perpendicular tdB, and electron and ion
collision frequencies much less than the electron and ion
cyclotron frequencies, respectively. In such a system the
electrons and ion&XB drift at the same velocity, ang=

—je- In the frame where the ion-fluid velocity equals zero,
ji=ie=0andE=01[10,26.

A. Weak magnetic field (o 7=<1)

Using ideas developed in Sec. Il and by Lorelriy Mar-
shak[3], Kittel [17], Kubo[27], and Lee and Morg57], we
obtain, after some algebfa18], the following results in the
weak-electric-field limit. Without loss of generality we as-
sume the magnetic fielB=B,e,. We express the results in
terms of a generalized electric fiel, [4,19], which we
define in Eq.(48). We assume that the direction Bf; with
respect taB is arbitrary, so thaEy=Egy.e+Eg e+ Ey.€, .

We find [118] that the second-rank conductivity tenssr
is given by

je: Q-Egv (37)
where
o, —og O
(_)-E O'D O'J_ 0 , (38)
0 0 0'”
o
og,= 2 2 (39
1+ wceTl
eB,
Wee= meC’ (40)
2.3
_ _ Mele1
1= T(Ver) = 4mn;Z%e*In Ay’ (41)
BweeTo0
=—— >, 42
7o 1+ (x)ce'TZ ( )
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6372In Aq The transverse resistivityn; differs by the factor

B= Se51m2) AL (43)  (InA;/In A,)? from the results given in Ref$26,57 for a
2 Lorentz plasma, since in the previous work the Coulomb
INA,=InA(vey), (44 logarithms are evaluated at the speed corresponding to the
average electron thermal energy.
10kgT ) Y2
UeZE( - ) , (45 B. Strong magnetic field(w 7>1)
e
When w.7(ve)>1 for characteristic values af., we
mZv3, find that the conductivity tensor elements , o, ando;

T3=T(Ve2) = Zan 228 A’ (46)  can be expressed as follokl18]:
|

=0 (47) o= &)—2—20 (55)
e o 148InAs) w75’
kgT [ dne
. 7) 48) INAs=InA(ves), (56)
The iti i _ ( kBT) 2
quantitiesr, In A4, andv; are given by Eqs(29), (30), Ve3= , (57)
and(32), respectively;r; and , are defined using Eq$10) Me
and(26); and InA, is defined using Eq(27). 5 3
The above expression fag is similar in form to that 4= 7(Veg) = MeV e (58)
given by Urpin and Yakovley45], Adamyan[77], and oth- 7 4mniZ%’In Ay’
ers. o, is the conductivity associated with current flowing
perpendicular t@ and parallel tdg,, oy with current flow- o _NeeC (59
ing perpendicular to botfB and Ey, and o with current 4B,
flowing parallel toB. We find o is independent oB, as
expected. Equationé39) and (42) are valid whenw..7;, o=0. (60)

weeTo=1 [118].
The second-rank resistivity tensgris defined by

7e=Eg, (49
where
7. nmo O
=g '=| —n0 7 O (50)
0 0 g9
g g
2 - 2 2 - 7 O
o tog o] top
—0qp o,
= 01.
(rf-i-oé cri-i-(ré (5D
1
0 0 —
g

In the limit wee71, wceT2— 0, we have from Eq939)—(47),
(50), and(51) (to first order inB,)

1
nL:;! (52)
3157 (InA4\* B, 53
707512 \In A,/ neec’ (53
1 54
m=- (54

The quantitiess and InA; are given by Eqs(29) and (30),
respectively; IM\; is defined using Eq(27); and 75 is de-
fined using Egs(10) and (26). Equations(55) and (59) are
applicable whenwge7m3>1 [118].

The resistivity tensomp is obtained from Eqs(50), (51),

and (55)—(60). In the limit weeT3—©, We have

- 32(InAjz|1 61
nL_E |nA1 Er ( )
_ B 62
nD_neec’ (62)

1

The ration, /5, differs by the factor (In\3/In A,) from the
results given in Refd.10,26,57 for a Lorentz plasma, since

in the previous work the Coulomb logarithms are evaluated
at the speed corresponding to the average electron thermal
energy.

IV. LIMITS OF APPLICABILITY

The results of Secs. Il and Il assume the Maxwell-
Boltzmann distribution function, the Boltzmann collision
term, the scattering-potential model described in Sec. Il, and
the Coulomb logarithm given by ER27). They also assume
that the integration of Eq28) described in Sec. Il, and simi-
lar integrations required to develop E@39), (42), (55), and
(59, are reasonably accurate. In this section we
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discuss the limits of applicability of these assumptions. In<26(InA;)/3. Using the conductivity model developed in
particular, we demonstrate that the classical distribution isRefs. [80,81,83,86—8B we estimate that the error intro-
valid to first order wher® =2, and that the Boltzmann col- duced in the conductivity by neglecting ion correlations is
lision term, the scattering potential model, and the Coulombess than exp-26(InA;)/3I'] when this quantity is much
logarithm require weak electron-ion coupling/Z<1). less than 1. When the plasma ions are weakly coupled (
=\p), then to an extremely good approximatigfyq) =1.
A. Maxwell-Boltzmann distribution

To estimate the range of temperatures over which the C. Scattering-potential model

Maxwell-Boltzmann distribution is valid, we use the Fermi-  The scattering potential model defined by EGH)—(17)
Dirac distribution to calculate numerically the average elec-assumes that when ion-ion coupling is strong, the effective
tron kinetic energy as a function @&. When ®=10 the screening lengthh=a [Eq. (17)]. Calculations by Hubbard
average energy is within 1% ofk3T/2, the Maxwellian re-  [28,44,58 show that this simple model leads to an error in
sult. When® =2 the average is 5% above the classicalthe Coulomb logarithm Ii; of at most—10%, +12% when
value; when® =1 the average is 13% higher. We concludel'/Z=1, =2, and I <I'<5. The error is reduced d5Z is
that the Maxwell-Boltzmann distribution is a reasonable ap-decreased an@ increased. At larger values bf the screen-
proximation for® as low as 2. Since we assume the elec-ing length becomes significantly less thanat I'=40 the
trons are nonrelativistic, we also require tHgT<m.,c?  value consistent with Hubbard’'s calculations is &.7
[i.e., 20/Z¥B)>(2713*7?)Y3(e?/ch)?~3Xx 10 7]. [28,44,58.

The electron component of the screening distance given Equation(17) also assumes that the electrons form a uni-
by Eqg. (16) is the electron Debye lengthAp, form background of negative charge that neutralizes the ion
= (kgT/4mn.e?) Y2 This expression assumes that the elec-space chargf28,51,57,74,103—1Q9This is valid when the
trons are Maxwellian. Assuming instead the Thomas-Fermcharacteristic electron-ion Coulomb-interaction energy is
potential and Fermi-Dirac distribution, we find that when much less than the average electron thermal engr@¥],
0=2, the error i\ p ¢ is =5%. This introduces &1% error
in the Coulomb logarithm. Hence it appears that @) is a ze < 3kgT
valid approximation for® as low as 2. a 2

(66)

Expressed in terms of the electron-ion coupling parameter

) _ T'/Z, Eq.(66) becomeg105]
Equation(3) assumes molecular chaos and that particles

B. Boltzmann collision term

interact only through binary collisiorj27,98—-100,11p We r 3
expect these assumptions to be most reasonable when the Z<5. (67)
characteristic momentum-transfer cross section is much less
than wa’ [27,99,119, [Equations (66) and (67) are identical to the condition
477264 A ()\D,e/a)2>2/9, which is given in terms of the electron De-
Qei(ver) = T1<Wa2_ (64) bye length] A uniform electron background can also be as-
MeVe1 sumed when
Expressed in terms df, Eq. (64) becomes 13,4\ 1/6
Zl/3 1/25 ( ) , (68)
r\? 49
S| <K—¥F7r. (65 )
VA 4InA, i.e., the electron thermal de Broglie wavelength
h/(3mgkgT) %= a.

Equationg64) and(65) are identical to the condition that the In addition, Egs.(15—(17) implicitly assume that the

71 -
mean free pathn;Qei(ve) | ">4a/3.I'/Z, the electron-ion  aqnetic field does not affect the electron-ion scattering

Coulomb-coupling parameter, is the ratio of the characterisz;oos  section.  This is valid when  both\

tic electron-ion Coulomb-inte_zraction energy to the eleCtr°”<(3kBT/me)1’2(meC/eB) (ie., the screening distance is
ther.”.‘a' energ)_[105]. Hence it appears that .the Boltz[’nan-n much less than the electron Larmor radiigt,82), and
collision term is applicable when electron-ion coupling is keT>%w.. (the magnetic field is nonquantizing

weak.
. . 52,55,80,81,87,
For the molecular-chaos assumption to be applicable, WE &

also require that ion positions be weakly correlated, i.e., that
the ion structure factor be-1. We estimate the effect of ion
correlations using the effective static structure facofq) As discussed in Sec. |, it has been assumed by several
=1—exp(—13a2g?/3l') given in Refs.[86,87, where q authors that a transition takes place between classical
=2k sin(¥/2). Using Eqs(11), (26), and the total scattering and quantum-mechanical scattering at temperatures
cross section obtained from E@0), we find that when the that range from (2%10%)Z%2 to (5.8x10°)Z?K
plasma ions are strongly coupled €a), the characteristic [5,8,10,15,26,36,37,40,h7To determine in a more quantita-
value of a?g?=2InA;. Hence S’(q)~1 when I' tive manner when a quantum-mechanical description is re-

D. Coulomb logarithm
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quired, we consider E¢30). The first term on the right-hand at temperatures orders of magnitude less than previously
side is obtained in the first Born approximation; the termgiven. (This is discussed further in Sec. V)A.
proportional toZe? is obtained in the second. We assume

that the accuracy of this equation is given by the raftiof
these term$111], The integration of Eq(28) discussed in Sec. Il assumes

In A(v) is constant. To estimate the resulting error, we inte-
27 ¢ grate Eq.(28) numerically using Eq(27) for In A(vg), from

)\mevgl Ue(min) 10 %, Wherev gy is the minimum speed for which

Eq. (27) is estimated to be valigWe cannot integrate Eq.

Since y;>1, & is approximately equal to the ratio of the (28) numerically from 0 to= since Eq.(27) is developed in

characteristic electron-ion potential energy to the electron kithe Born approximation, and as discussed above, appears to

netic energy Whenpe: Ve - The ratiod is reduced as. is be valid onIy when ZEZ/AmeU5< 1. The contribution to the

increasedwhich is counterintuitive since the scattering po- integral from 0 tov¢miny IS negligible if v miny<ve and

tential increases everywhere asincreases Hence it ap- InA(ve) is reasonably behavddWhenT'/Z<1, =2, and

pears that Eq(30) is most valid in the high-temperature veminy=ve/2, the numerical result agrees with Eq29)—

low-density limit, i.e., whem — . (32) to within <3%. Similar considerations apply to the cal-
We do not prove tha#<1 is a sufficient condition for the ~culations leading to Eqg39), (42), (55), and(59).

validity of Eq. (30), but propose this as a plausible

hypothesis. We show in Sec. V that this assumption V. RESULTS

appears consistent with experimental results, and is more A B=0

accurate than the quantum-mechanical model presented in '

Refs. [5,8,10,15,26,40,97 We also note thafas is well In Tables | and Il we compare the results of Sec. Il to

known) when A —o, do;/dQ [Eq. (20)] approaches the other theoretical predictions and to conductivity measure-

exact nonrelativistic quantum-mechanical Rutherford crossnents. Because the effects of electron-electron collisions are

E. Integration over electron speed

In y;—In243
X ) . (69)

1
Inx;—3

section obtained by Gorddri.20]. expected to be significant for some of the plasmas consid-
When I'sZ/3(Z+1) (i.e., when ion-ion coupling is ered, we correct the conductivity given in Sec. Il for
weak), then\=\p and § is obtained from Eq(33), electron-electron scattering, and give corrected values in the
tables. We define the corrected conductivity as
[12Z+1)]YT%2 [ In y;—In 2473
= 77372 1 ) (70 oc=yo, (73
Inx;—3

where o is given by Eq.(29). Following Refs.[67,73, we
Thake the simplifying assumption thatis a function only of
Z and O (i.e., we neglect the dependence pfon I'). We
approximatey as

In this case it appears that the Born approximation is alway
a reasonable estimate: since the maximum valuel of
=Z/3(Z+1), & never exceeds 5%. Whehi=2Z/3(zZ+1)
(ion-ion coupling is strong then\=a, § is obtained from

Eq. (39), - (1—7..) 70
2T [ In y,—In 243 Y=Y 0
S AL B (71 1+0.6In =+1
7Z\ Tyt | _ 20" /|
and we expect the Born approximation to be valid when _37 14 6.45%°+14.66F 75
V== 32| 7" 26972+ 11,612+ 7.645 "
r < ! 72)
z 2 ( Equation (74) was developed empirically to be consistent

. . o with the theoretical results shown in Fig. 4 of RE0]; the
i.e., when electron-ion Coulomb coupling is wegks noted  agreement is to within=2% for 2.4<®<1100. Comparing
earlier, the conditions given by Eq®5), (67), and(72) are  Eq. (74) with other calculation§62], we estimate the uncer-
consistent. _ tainty in y to be ~10%. Equation(75) is taken from Ref.
The discrepancy between E¢69)—(71) and assumptions [61] and is consistent to within 1% with results presented in
made previously5,8,10,15,26,36,37,40,b%an be signifi-  Refs.[5,6,10,11.
cant. We consider, for example, a plasma witk 10, I We include in the tables a corrected SpitzérHaonduc-
=5, and®=50. The temperature of such a system is 3.Gyity that we define as
X 10° K. For these condition$=0.13, which suggests that
the Born approximation would be applicable. However, ac- 2(2kgT)%?
cording to Refs.[8,10], electron-ion scattering in such a OSHC= YOsH=7Y 327022 , (76)
! ) mrZe m;“In Agy

plasma does not require a quantum-mechanical treatment for

Ao )2

Pmin

temperatures as high as (%20°)Z?=4.2x 10’ K. Hence,
assuming the Born approximation is valid whér1, we InAgy=In
find that electron-ion scattering can be quantum mechanical

12

1+ , (77)
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TABLE I. Comparison of measured conductivities of shock heated xenon with theoretical predictions. The measurements were performed
by Mintsev, Fortov, Pavlov, and Gryazn{®3,94]. The values ofrgyc, omshc, opc, andoc are given by Eqs(76), (82), (84), and(73),
respectively.[To convert from cgs-Gaussian unitstatohm cni * to (Q cm)™%, the theoretical conductivities have been multiplied by
1.113<10 2] The ionization charge states listed in the first column were inferred from the measurd@nsd are used for the
conductivity calculations. The quantiy[Eq. (69)] is the ratio of the Coulomb-logarithm term obtained in the second approximation to that
obtained in the first. The correction for electron-electron scatteyifigq. (74)] ranges from 0.90 to 0.97 for the plasmas listed.

T Ne Texpt OSHC OMSHC Opc oc

z (10° K) (cm™3) r riz C) 5 ©Qem™t  @em™?t @Q@ecmt @Q@ecmt @Qcm?
1.8 47 4x 10°7° 1.12 0.62 205 0.15 47190 1600 845 522 366
2.4 70 6x 107° 1.40 0.58 233 0.15 7060280 2170 1110 676 484
2.8 95 6x 107° 1.33 0.48 316 0.12 550220 2350 1340 830 628
2.1 65 1.x10?t  1.43 068 154 0.17 620250 2720 1270 788 532
1.9 62 1.x10% 1.38 0.73 123 0.18 670270 3040 1370 876 573
2.2 70 15100 1.64 0.75 12.6 0.18 700280 3490 1450 895 582
15 64 2.1 1.04 069 953 0.17 759300 3480 1780 1265 830
1.3 50 341070  1.25 096 523 0.23 830330 4820 1820 1326 738
2.2 76 2.4 1071 1.77 0.80 10.0 0.20 1106440 4570 1740 1089 684
1.6 59 4107 1.63 1.02 527 024 1300520 6080 1990 1363 740
1.1 44 451070 1.18 1.08 381 0.25 979390 5570 1960 1541 784
0.9 37 6.0x 107 1.11 1.23 265 0.27 736290 6610 2090 1845 824
0.7 29 481071 0865 124 241 0.27 680270 5460 1870 1824 792
where to pgg at the speed .= (3kgT/my) V2 that corresponds to the

Pmin= Pclassical when Pclassica® pqmv (78)

Pmin= Pgm when pjassicars Pgm: (79
zé?

Pclassica™ mu (80)

= f = n 81

pqm= 2(3mekBT)1/2=g(gmekBT)I/Z' ( )

ogy is the Lorentz-plasma conductivity given in Ref8,
10,11; y is defined by Eq.(74); Ap is the Debye length
given by Eq.(16); {=1/44; andh is Planck’s constant. The
quantity pejassica pg({ve=(3kBT/me)1/2], wherepg is the

average electron thermal energy. The quantity
h/(3mksT)Y?in Eq. (81) is the electron thermal de Broglie
wavelength.

Since Refs[8,10,11 assume\p/py,in=>1, the Coulomb
logarithm given in these References is approximated as
INn(\p/Pmin)- Equations(77), (78), and (80) give the exact
expressiorni2] for classical scattering by an unscreened Cou-
lomb potential assuming the maximum impact parameter
equals\p, and that the effective classical valuemf;, can
be approximated aBssicall 10]. The correction tq,;, in-
dicated by Eqgs(79) and(81) is introduced in Ref[8,10] to
account heuristically for quantum effects. According to Egs.
(78—(81), the transition from classical to quantum-
mechanical scattering occurs at a temperature of (4.2
X 10°)Z? K [8,10]. Other authors have used this mopeds.
(78—(81)] with different values for the constant

classical impact parameter that results in a 90° deflection fgj5,15,26,40,5F in these discussions, the transition tempera-

an electron with speedg, [2,8,10,1]. HencepassicailS €qual

ture varies from (2.% 10°)Z2 to (5.8x 10°)Z2 K.

TABLE Il. Comparison of measured conductivities of ohmically heated aluminum with theoretical predictions. The measurements were
performed by Benage, Shanahan, and Mufi#6—97. The values ofrsyc, omshe, opc, andoc are given by Eqs(76), (82), (84), and
(73), respectively[To convert from cgs-Gaussian unitstatohm cni * to (€ cm) ™2, the theoretical conductivities have been multiplied by
1.113<10 2] The ionization charge states listed in the first column were inferred from the measurd®igngd are used for the
conductivity calculations. The quantiy[Eq. (69)] is the ratio of the Coulomb-logarithm term obtained in the second approximation to that
obtained in the first. The correction for electron-electron scatteyifigq. (74)] ranges from 0.94 and 0.98 for the plasmas listed.

T Ne Texpt OsHC OMSHC Opc oc
z (10° K) (cm™3) r riz 0 5 ©Qcmt  @em™?t @Q@ecmt @cmt  @Qcm?
2.2 104 3.0x10% 300 136 255 0.31 2000300 24900 4450 3130 1360
2.5 146 2.0K10% 231 092 467 022 1495220 15500 4660 3266 1830
3.1 201 1.1&10%% 201 065 9.16 0.16 1370210 11200 4700 3206 2130
3.8 253 7.8%10°8 196 052 151 0.13 1545230 9720 4690 3131 2250
4.2 285 6.4% 1078 193 046 194 0.11 2000300 9230 4740 3137 2340
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We also include in the tables a modified Spitzerida
conductivity that we define as

B B 2(2kgT)32 -
OMSHC™ YUMSH—Vﬂ_s/zZezmé/zmAMSH, (82
N | 2112
INnAysy=In| 1+ ) (83
Pmin

omshc IS identical toogyc except that Eqs(76) and (77)
assume that the screening distancealways equals\p,
whereas Eq982) and(83) assume is defined by Eqs(16)
and(17).

PHYSICAL REVIEW E66, 046417 (2002

either increase or leave unchanged each of the values of
ospyc and oy suc listed in the tables; decreasingwould
have no effect.

These results appear inconsistent with the discussion in
Refs.[66,69,89,90) which suggests that whea=1, I'<1,
and ®>1, the Born approximation is not applicable when
T<1.7x10° K (i.e., '’?’0>1), and that at these tempera-
tures a quasiclassical calculation is required. We find instead
that whenZ=1, the Born approximation is valid over the
entire parameter regime defined bys1 and® =2, and not
just whenT>1.7x10° K. However, the resulting discrep-
ancy in the conductivity is not great, which indicates there is
a large range over which the quasiclassical and Born calcu-

In addition, we list in Tables | and Il the conductivity lations are both valid. For example, whér= 1, T=10" K,
calculated by Potekhin, Baiko, Haensel, Yakovlev, and Kaandne=1x10" cm 3 (I'=0.125,0 =1100), the contribu-
minker[80,81,83,86—8B This model was developed prima- tion to the Coulomb logarithm from the second Born ap-
rily to calculate transport coefficients of degenerate relativpproximation is 3%; hence we expect the approximation to be
istic electrons in neutron-star envelopes, and according twalid. Neglecting electron-electron collisions, we find that
Ref. [88] provides order-of-magnitude estimates in the nonfor this plasma the conductivithEg. (29)] is 50 (Q cm)™;
degenerate regime. We defing: as the model described in Refd.66,69,89,90 obtains 63
(©Qcm)~L. The discrepancy is reduced Ess decreased.

Comparingopc [EQ. (84)] and o¢ with gy, in Tables |
and I, we see thatrc appears, on average, to be in some-
whereoy is calculated using theoRTRAN source code avail-  what better agreement with experimefithis assumes Eq.
able from Ref[88]. (74) is an accurate correction for electron-electron scatter-

The conductivity measurements listed in Table | were pering.] For the 18 measurements listed in these tables, the
formed on shock-heated xenon by Mintsev, Fortov, Pavlovsquare root of the average value [§frpc— aexpt)/(rexp,]Z is
and Gryaznoy93,94. The experimental error is estimated as81% ; for o, this quantity is 28%. Wheli'/Z<1 and®
30-50 %[94]; a value of 40% is used for the errors listed in =2, there are four significant differences betwessy. and
the table. The measurements in Table Il were performed 0g-. The first is thatopc is calculated in the first Born ap-
ohmically-heated aluminum by Benage, Shanahan, angroximation whereasr is calculated in the second. The
Murillo [95-97. The experimental error for these measure-quantity 6 [Eq. (69)], the ratio of the Coulomb-logarithm
ments is estimated as 15(85-97. The charge states given term obtained in the second approximation to that obtained
in Tables | and Il were inferred from the measurementsn the first, is listed in Tables | and II, and for the plasmas
[94,97 and are used for the calculations ®§,c, omsHe,  considered is found to be as large as 30%.
opc, andoc. The second difference is due to the scattering potentials

There appears to be a large discrepancy between the megssumed by the two models. The model described in Sec. II
surements andosyc. There is better agreement with [Egs.(16) and (17)] finds that for all the plasmas listed in
omsHe, Which suggests that the scattering-potential modefrables | and I\ =a. This appears to be more accurate than
given by Egs.(16) and (17) is more accurate than simply the model assumed in Ref80,81,83,86—8B which finds
assumingh=A\p . [For all of the measurements listed in that for the plasmas listed the effective screening distance is
Tables | and II,I'>Z/3(Z+1); hence all of the values of significantly less tham. The third difference is that we as-
omsHc andoc listed assuma =a.] Comparingoysycand  sume a Maxwell-Boltzmann distribution for the electrons,
oc With o¢, We see that agreement with experiment is betwhereas Refs[80,81,83,86—8Bassume the more-accurate
ter for o, which suggests the Born approximation is moreFermi-Dirac distribution. The fourth is that we integrate Eq.
accurate than the heuristic quantum-mechanical model give(28) analytically as described in Sec. I, whereas in Refs.
by Egs.(78)—(81). [80,81,83,86—8B the calculations are performed numeri-

According to Eqs(78)—(81), the Coulomb logarithm can cally. The third and fourth differences together have a 4%
be calculated classically for all the plasmas listed in Tables kffect on the calculated conductivity for the first plasma
and 11[8,10,26. Assumingé<1 is a sufficient condition for listed in Table I, and a 1-3 % effect for the other entries in
the validity of Eq.(30), we find instead that the Coulomb Tables | and II.
logarithm is quantum mechanical for all of the results in We find that even though the loffe Institute model
these tables, at temperatures as much as a factor of 35 1€80,81,83,86—8Bwas developed primarily for degenerate
than the transition between classical and quantum scatterirgystems, it is significantly more accurate than any possible
estimated in Refg[8,10,26. (As discussed in Sec. 1V, this version of the Spitzer-Han conductivity for the nondegen-
discrepancy can, for other plasma conditions, exceed twerate plasmas listed in Tables | and Il. We also note that the
orders of magnitudg.The model given by Eqs.78)—(81) loffe model is considerably more accurate than stated in Ref.

Opc=70p, (84)

cannot be improved simply by changing the constantEq.
(81), as is done in Refd5,15,40,57: increasing/ would

[88], and that it would be straightforward to improve its ac-
curacy for nondegenerate systems.
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TABLE lll. Calculated elements of the resistivity tensor for a Lorentz plasma. The Coulomb logarithms
In Ag and InA )y, are defined in Ref§26] and[57], respectively; IM\, In A,, and InA3, are defined by Eqgs.
(30), (44), and (56). The quantityz, is given by Eq.(90). Without loss of generality we have assunigd
=B,e,. In the high-temperature low-density limit, the quantities\l, In Ay, INA4, InA,, and InAg,
converge to the same value.

Braginskii[26] Lee and Morg57] Secs. Il and 11l
Uil 701N Ag 701N Apwm 7o InAq
2 8,0 1 1 1
T
2
75 (B,—0) 1.988, 1.9328, 3157 ( InA; E
n.ec n.ec 512 \In A,/ nec
7 32 32 (In A,
2B i 3.32 — | =
7 (Bre) 37 37T(In Ay
B, B, B,
70(B;—%) n.ec n.ec n.ec

Assuming a 10% uncertainty in each of the quantiies (4.30 of Ref.[26]. Assuming the plasma is in a steady state,
T, ne, v, andao, we find that the conductivity is consistent  electron and ion pressures are scalars, and temperature gra-
(to within the error ino¢,,) with all of the measurements in dients can be neglected, we find tiiat the frame where the
Table I, and three of the five in Table Il. Becausg is in  ion-fluid velocity equals zejothese equations give
reasonable agreement with most of the measurements, we

expect it to provide a useful analytic estimate for the con- _ Mo, :
ductivity of a Lorentz plasma whed=1, I'/Z<1, and® Eq=71)er B, BXjeL+ Ml 89
=2. The minimum value of the Coulomb logarithm An
[Eq. (30)] whenz=1,T/Z=<1, and®=2 is 1.9.(The mini-  Where
mum is achieved whed=1, I'=1/6, and® =2.) Given the -
approximations and uncertainties involved, this is consistent (1 4.63w¢,7e+0.0678 Me 6
with the assumption by Lee and Mof&7] that, in general, = weeTa+ 7.4820% 75+ 0.0961) Tone?’
the minimum value of the Coulomb logarithm is 2.

We note some care must be taken vyhen comparing con- weeTe(1.70402,72+0.0940 | m, B,
ductivity models with each other and with experimental re- 775—( w§e72+7_482wge7_§+0_096]) 7N + neec’

sults. For example, for each of the conductivitigg, listed

in Table I, the xenon shock velocity was measured to infer (87)
the xenon-plasma mass density and pressure. These, in turn,
were used in an equation-of-state calculation to infer the 3m| _me

| equat m=\35 ——=nolnAg, (88)
temperature and ionization charge state. When the mass den- TeNe€

sity and inferred temperature are subsequently input to a

computational algorithm to determine a theoretical conduc- (37| my?2(2kgT)?

tivity, the computation, if it includes a different equation-of- Te=\| 30 772" n, InAg’ (89)
state calculation, may find a charge state that is not consis-

tent with the one originally used to interpret the 73127 2mY/2
measurements. Comparisons between theory and experiment, No= —57 (90)
and between different theoretical models are, of course, more 2(2kgT)

meaningful when the same charge state is used throughout . . .
(as in Tables | and )] to eliminate discrepancies in the con- quat|ons(86)—(90) assume the plasma is Lorentzidithe
ductivity due simply to differences in the equations of State_calculatlons_ b_y Braginskii include the effects of electron-
electron collisions and are more general than E88—(90).
We present here only the results of R¢f6] obtained for a
B. B#0 Lorentz plasma.Reference$15] and[26] use the notation
Braginskii [26] and Lee and Mor¢57] give explicit ex- 1/o, whenn, is intended; Eqs85)—(90) have been rewrit-
pressions for the resistivity tensor of a Lorentz plasma. Irten to be consistent with the notation in this paper. The cur-
Table Ill we compare these results in the limBs—0 and  rent densitie§, andj, are parallel and perpendicular By
B,—0° to the predictions of Secs. Il and Ill. respectively. The Coulomb logarithm Ay is that given by
The Braginskii tensor elements can be expressed in thBraginskii[26]. (Referencd 26] has two discussions on the
notation of Secs. Il and Il by combining Eq&.2e and transition temperature between classical and quantum scat-
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tering for the Coulomb logarithm. On page 215, this tem-resistance of the pinch which is of interest for electrical
perature is given as 5810° Z2 K. On page 238, because of simulations of the pinch-accelerator syst¢ir22,128,129
a typographical error, it is not clear whether .70° Z? or ~ can estimated using the results of Secs. Il and IIl.
1.1x10° Z? K is intended). The quantityr, is the relaxation At stagnation, when the power radiated in x rays by the
time defined by Eq(2.56 of Ref.[26]. pinch reaches its peak val#30 TW [130-136), we can
The Lee-More results are summarized as H§8 and model the pinch plasma as a 0.1-cm-radius, 1-cm-length cyl-
(62 in Ref. [57]. These are expressed in terms of the Hallinder. We assume the temperature and axial current density
coefficient, defined in Ref57] asR=7/B. (The Hall co- are uniform throughout, and that the electron and ion number
efficient is normally defined as #;/B [77].) In the nonde- densities are uniform in the axial direction. We estiméte
generate limit, we can express the Lee-More resistivity par~2.5<10° K (210 eV), n;~6.2x10%°cm 3, and z~31
allel to the magnetic field aggIn Ay, where 7, is defined [130-138. Since Z>1, we can neglect the effects of
by Eg.(90), and the Lee-More Coulomb logarithmM,, is  electron-electron  collisions on  the  conductivity
described in Refl57]. (We note that Ref[57] contains sev- [5,6,10,11,61 The plasma is not degenerat® £ 80) and
eral typographical errors and implicit assumptions. There apelectron-ion coupling is fairly weaki{/Z=0.3), but ion-ion
pear to be sign errors in EgEL6) and in some of the previ- coupling is strong [=9). (Hence the pinch is a nondegen-
ous expressions in Ref$57]. The sign before the Hall erate Coulomb liquid.We approximate the screening dis-
coefficientsR andR, in Egs.(52) and(62), respectively, are tance as\=a in accordance with Eq17).
incorrect. The superscriptand » are interchanged in Egs. We estimate the resistance in the direction of the pinch
(583 and (58h), and also in Eqs(B12) and (B13). The ex-  current, which we label as being in tkalirection. We define
pression 1#, is used wheny, is intended. Equatiof62) in  the z direction to be that of the azimuthal magnetic field.
Ref.[57] is not valid when the Larmor radius is less than theAssuming that at stagnation the electron and ion currents in
screening distance of the scattering potential, or when th#éhey direction (the Hall currentsequal zero, we have from
magnetic field is quantizing, so this equation is not, in fact,Egs. (49 and (50) that 7, je,=Eg=Ey. (We setEy=E,
valid at arbitrarily strong magnetic fields. Also, the results insince we neglect density gradients in théirection) Since
Ref. [57] implicitly assume a frame of reference where thethe magnetic field at the edge of the pinch is>310’ G,
ion-fluid velocity equals zero. In addition, as discussed incharacteristic values Ofo..71, weemo~1—2. Using Egs.
Sec. Il above, it appears that since the Lee-More model ag39), (42), (50, and (51) we estimate that»np, ~2
sumes a Lorentz plasma, it is most accurate when the elec< 10”4 ) cm, which is three times as resistive as room-
tron and ion temperatures are approximately egqual. temperature stainless steel. The pinch resistaneerzisn().
Without loss of generality we assuni&=B,e, for the  Since the current at stagnation is 17 MA, the resistive volt-
results listed in Table 1ll. The predictions of Secs. Il and Il age drop across the pinch is®1@. Similar calculations sug-
for , I, and ng differ somewhat from the earlier calcula- gest that the resistance during most of the wire-array implo-
tions. For example, we consider a plasma witk1, I’ sion is also on the order of a few milliohms. Assuming that
=0.06, and® =2. Under these conditions, in the linl, these estimates adequately describe a real pinch, it appears
— (B,=5x10° G) we find thatz, /7,=2.05, which is that the performance of th# accelerator is not significantly
40% less than the value 32#3-3.395 predicted by Bragin- affected by the pinch resistance, since it is much less than the
skii [26] and Lee and Morg¢57]. The value 32/& is also  pinch impedancé~0.1-0.4()) due to inductive effects.
obtained by Spitzef10]. Numerical calculations using the
model presented in Reff80,81,83,86—8pfind that for these ACKNOWLEDGMENTS
conditions », /7,=2.09. WhenzZ=1, I'=0.06, ®=2, and
B,—0, we find (p,n.ec/B,) =1.68, which is 15% and 13% The authors are grateful to J. F. Benage, W. R. Shanahan,
less than the values given in Ref$26] and [57], and M. S. Murillo for providing the ionization charge states,
respectively. For these conditions, the model describedemperatures, densities, and measured conductivities listed in
in Refs.[80,81,83,86—8Bgives (7yn.ec¢/B,)=1.61. In the Table II. We are indebted to K. R. Cochrane for invaluable
high-temperature low-density limit(<1,0>1), the Cou- Computations, and V J. Harper-SIabosze_wmz and T. L. Cut-
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