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Analytic electrical-conductivity tensor of a nondegenerate Lorentz plasma
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We have developed explicit quantum-mechanical expressions for the conductivity and resistivity tensors of
a Lorentz plasma in a magnetic field. The expressions are based on a solution to the Boltzmann equation that
is exact when the electric field is weak, the electron-Fermi-degeneracy parameterQ@1, and the electron-ion
Coulomb-coupling parameterG/Z!1. ~G is the ion-ion coupling parameter andZ is the ion charge state.!
Assuming a screened 1/r electron-ion scattering potential, we calculate the Coulomb logarithm in the second
Born approximation. The ratio of the term obtained in the second approximation to that obtained in the first is
used to define the parameter regime over which the calculation is valid. We find that the accuracy of the
approximation is determined byG/Z and not simply the temperature, and that a quantum-mechanical descrip-
tion can be required at temperatures orders of magnitude less than assumed by Spitzer@Physics of Fully Ionized
Gases ~Wiley, New York, 1962!#. When the magnetic fieldB50, the conductivity is identical to the
Spitzer result except the Coulomb logarithm lnL15(ln x12

1
2)1@(2Ze2/lmeve1

2 )(ln x12ln 24/3)#, where
x1[2meve1l/\, me is the electron mass,ve1[(7kBT/me)

1/2, kB is the Boltzmann constant,T is the tempera-
ture,l is the screening length,\ is Planck’s constant divided by 2p, ande is the absolute value of the electron
charge. When the plasma Debye lengthlD is greater than the ion-sphere radiusa, we assumel5lD ;
otherwise we setl5a. The B50 conductivity is consistent with measurements whenZ*1, Q*2, and
G/Z&1, and in this parameter regime appears to be more accurate than previous analytic models. The mini-
mum value of lnL1 whenZ>1, Q>2, andG/Z<1 is 1.9. The expression obtained for the resistivity tensor
(BÞ0) predicts thath' /h i ~whereh' andh i are the resistivities perpendicular and parallel to the magnetic
field! can be as much as 40% less than previous analytic calculations. The results are applied to an idealized
17-MA z pinch at stagnation.

DOI: 10.1103/PhysRevE.66.046417 PACS number~s!: 51.50.1v, 51.60.1a, 52.20.Fs, 52.25.Fi
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I. INTRODUCTION

Electrical conduction in a plasma has been an active s
ject of theoretical research for over 50 years. In pioneer
studies, Lorentz@1#, Chapman, Enskog, and Cowling@2#,
Marshak @3#, Cowling @4#, Landshoff @5,6#, Conwell and
Weisskopf@7#, Cohen, Spitzer, and Routly@8#, Spitzer@9,10#,
and Spitzer and Ha¨rm @11# developed classical expressio
for the electrical conductivity. These seminal results ha
been generalized by various methods@12–92#. In the pres-
ence of a magnetic field, the conductivity is a second-ra
tensor; calculations of the tensor elements are presente
Refs. @2,4,5,9,10,12–17,19–21,25–27,30,31,33–35,38–
43,45,52,55,57,58,61,74,77,80–82,87,88#.

The conductivity is a function of momentum transfer
scattering events between electrons and other particles. M
of the early work assumes that electrons follow class
scattering trajectories. For electron-ion scattering, the cla
cal Coulomb logarithm is a function of the electron impa
parameter that results in an electron deflection of
@2,8,10,11#. Quantum-scattering effects are often introduc
by correcting the classical result: the 90° impact param
p90 is replaced by the electron de Broglie wavelength mu
plied by a constant when the product is greater thanp90
@5,8,10,15,26,40,57#. ~Since the de Broglie wavelengt
}ve

21 whereve is the electron speed, andp90}ve
22, quan-

tum effects become important at high temperature.! In such
conductivity models the transition from classical to quant
scattering occurs between (2.73103)Z2 and (5.8
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3105)Z2 K, depending on the constant assumed, whereZ is
the ionization charge state@5,8,10,15,26,40,57#.

To include electron-diffraction effects in a self-consiste
manner, a number of quantum-mechanical calculations h
been performed. These studies often expand the electron
tribution function in terms of Sonine~i.e., generalized La-
guerre! polynomials. Kivelson and Dubois@24# obtain the
conductivity from a one-Sonine-polynomial solution
quantum kinetic equations; Williams and DeWitt@36# present
one-, two-, and three-Sonine-polynomial results. Boerck
Rogers, and DeWitt@50# use a correlation-function expres
sion for the collision frequency to develop a one-Sonine c
ductivity. Ichimaru and Tanaka@59# and Kitamura and Ichi-
maru @78# obtain a one-Sonine solution by considering t
scattering of electrons in the random potential fields of
ions. When the one-Sonine expressions@24,36,50,59,78# are
corrected as described by Landshoff@5,6# to produce
infinite-Sonine results, they are, in the high-temperature lo
density limit, identical, and are dependent on scattering
culations performed in the first Born approximation.

We use here a more direct approach@1,3,7,12,13,57# that
can be applied to a Lorentz plasma. The method is anal
and self-consistently includes quantum-scattering effe
Following Lorentz@1#, Marshak@3#, Conwell and Weisskopf
@7#, Brooks and Herring@12,13#, and Lee and More@57#, we
develop in Sec. II an exact solution to the linearized Bol
mann transport equation for a nonrelativistic nondegene
plasma in a weak electric field. We show that the Lore
model, which assumes the ions are infinitely massive, is
©2002 The American Physical Society17-1
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plicable to plasmas with finite-mass ions when the elect
and ion temperatures are approximately equal. We ass
electrons are scattered in binary collisions by a static
screened Coulomb potential, and that the screening le
equals the ion-sphere radius when ion-ion coupling is stro
The Coulomb logarithm is obtained in the second Born
proximation. We take into account the energy dependenc
the Coulomb logarithm and evaluate it in closed form. T
conductivity thus obtained differs from previous analytic r
sults @1–18,20,21,23,24,26,29–31,33,35–41,43,46,47,49
54,56,57,59,61,62,64,66–73,76–78,80,81,86,87#, and com-
plements numerical quantum-mechanical calculations
are valid over a wider range of plasma paramet
@21,23,25,28–30,32,33,36,42,44–60,62,63,65,66,68,69,7
81,83–92#.

In Sec. III we present explicit analytic expressions for t
conductivity and resistivity tensors of a plasma with a de
sity gradient and a magnetic field. Because we calculate
Coulomb logarithm in the second Born approximation a
take its energy dependence into account, we obtain res
that differ from previous analytic expressions.~The results
presented here neglect magnetic-field effects on the elec
ion scattering cross section; such effects are addresse
Daybelge@34#, Yakovlev @52#, Hernquist@55#, Potekhin and
Yakovlev @80,81,87,88#, and Geller and Weisheit@82#.!

In Sec. IV we show that the validity of the Boltzman
collision term, the scattering-potential model described
Sec. II, and the Coulomb logarithm are dependent on
electron-ion Coulomb-coupling parameter. Assuming
Coulomb logarithm is valid when the contribution from th
second Born approximation is small, we find that a quantu
mechanical description can be accurate at temperature
ders of magnitude less than assumed previou
@5,8,10,15,26,36,37,40,57#.

In Sec. V we compare the results of Sec. II with t
Spitzer conductivity model, the more-general quantu
mechanical conductivity model developed by Potekh
Baiko, Haensel, Yakovlev, and Kaminker@80,81,83,86–88#,
and measurements performed on shock-heated xenon@93,94#
and ohmically heated aluminum@95–97#. We demonstrate
that there is no choice for the transition temperature in
Spitzer model that can bring it into agreement with the m
surements. The results also appear inconsistent with dis
sions in Refs.@66,69,89,90#, which suggest that for a singl
ionized plasma the Born approximation is not valid for te
peratures much less than 1.73105 K. We find instead that
the accuracy of the Born approximation is determined by
electron-ion Coulomb-coupling parameter, and not just
temperature. An example of the applicability of the results
given in Sec. VI, where we estimate the resistance of
idealized 17-MA tungstenz pinch at stagnation.

II. THEORETICAL SCALAR CONDUCTIVITY „BÄ0…

We consider a nonrelativistic two-component plasma c
sisting of electrons and ions at the same temperatureT. We
assume the electrons are nondegenerate; i.e., the ele
thermal energy is much greater than the Fermi energyEF ,
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Q[
kBT

EF
5

2mekBT

\2~3p2ne!
2/35

2mekBT

\2~3p2Zni !
2/3@1, ~1!

whereQ is the electron-Fermi-degeneracy parameter@51,78#,
kB is the Boltzmann constant,me is the electron mass,\ is
Planck’s constant divided by 2p, ne is the electron numbe
density,ni is the ion number density, andZ[ne /ni is the
ionization charge state.~Equations are in cgs-Gaussian un
throughout.! At an electron density of 1021 cm23, EF
50.36 eV (4.23103 K).

To calculate the conductivity, we determine the stea
state current density as a function of electric field in t
weak-field limit. The current densityj5 je1 j i whereje andj i
are the electron and ion current densities, respectively.
evaluate the conductivity in the reference frame where
ion-fluid velocity equals zero; hencej i50 and j5 je . The
current densities and field can be readily transformed to o
frames. The results developed in this section are, of cou
directly applicable whenj i! je . This is a reasonable approx
mation, for example, in the frame where the total fluid m
mentum equals zero, since in this caseu j i u5(Zme /mi)u jeu
!u jeu. The current densityj5 je is calculated from the elec
tron distribution functionf e .

We assumef e satisfies the Boltzmann transport equati
@98–100#,

] f e

]t
1ve"

] f e

]r
2

e

me
E"

] f e

]ve
5

] f e

]t U
collisions

, ~2!

where f e5 f e(t,r ,ve), e is the absolute value of the electro
charge, andE is the electric field. Without loss of generality
we assumeE5Ezez whereez is the unit vector in thez di-
rection. For the discussion in this section we assume that
magnetic field equals zero. The expression on the right-h
side of Eq.~2! is the collision term, i.e., the time rate o
change off e due to collisions.

For a two-component plasma, the collision term is t
sum of two expressions: one due to electron-electron co
sions and the other to electron-ion collisions@98,100#. In this
paper we assume the plasma is Lorentzian; i.e. that elect
electron collisions can be neglected and the ion massmi
@me @1,2,5,6,8,10,11,101#. ~As described by Blatt@102# and
others, the electron-fluid momentum does not change in
electron-electron collision. However, the electron velocity
randomized, which increases the electron-ion scatte
probability and decreases the conductivity.! The effect of
electron-electron collisions on the conductivity is a functi
of Z and Q. In the nondegenerate limit (Q@1), electron-
electron collisions reduce the conductivity by 42% whenZ
51; whenZ516, the reduction is 8%@5,6,10,11,61#. Due to
the Pauli exclusion principle, these collisions become l
significant asQ is decreased@53,67,73,89,90#. According to
Ref. @90#, when Z51, T5104 K, and ne51019 cm23 (Q
551), electron-electron collisions reduce the conductiv
by ;20%; whenZ51, T5104 K, and ne51021 cm23 (Q
52.4), they have less than a 3% effect. Hence electr
electron collisions can be neglected when eitherZ@1 or Q
!50.
7-2
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Considering only electron-ion collisions, the collisio
term becomes@100#

] f e

]t U
collisions

5E E @ f e~ve8! f i~vi8!

2 f e~ve! f i~vi !#g
]sei

]V
dV dvi , ~3!

where f i is the ion distribution function,ve and ve8 are the
electron velocities before and after an electron-ion collisi
vi and vi8 are the corresponding ion velocities,g[ugu[uve

2vi u, and ]sei /]V is the differential cross section fo
electron-ion scattering fromg to g8. The differential solid
angledV[sinqdqdw, whereq is the angle betweeng and
g8, andw is the azimuthal scattering angle. The integration
over all angles and velocities. Equation~3! assumes elastic
scattering~i.e., ugu5ug8u) and that there is only one ion spe
cies. ~Generalizing to several ion species is straightforw
@53,100#.!

Because we assume that the electron and ion tempera
are equal,meuveu25mi uvi u2 for characteristic values of th
electron and ion velocities. Hence

uvi u!uveu!uvi u
mi

me
. ~4!

Since @as indicated by Eq.~4!# the ion momentum is typi-
cally much greater than that of an electron, we can ass
f i(vi8)' f i(vi). Since the characteristic electron speed
much greater than the ion speed,g've[uveu. Consequently
Eq. ~3! can be simplified as

] f e

]t U
collisions

5niE @ f e~ve8!2 f e~ve!#ve

]sei

]V
dV. ~5!

Equation~5! is identical to that developed by Lorentz@1#,
Marshak@3#, and Conwell and Weisskopf@7#, who assume
infinite-mass ions. Since Eq.~4! is most correct whenuveu
5uvi u(mi /me)

1/2, Eq. ~5! is most applicable to plasmas wit
finite-mass ions when the electron and ion temperatures
approximately equal.

We assume that the electric field is sufficiently weak t
f e is only slightly perturbed from its equilibrium value
Hence we look for a solution to Eqs.~2! and~5! of the form

f e5 f e02t~ve!
] f e

]t U
collisions

[ f e01 f e1 , ~6!

where

f e0[neS me

2pkBTD 3/2

expS 2me~vex
2 1vey

2 1vez
2 !

2kBT D ~7!

is the Maxwell-Boltzmann distribution function,u f e1u! f e0 ,
and the velocity components in Eq.~7! are defined byve
5vexex1veyey1vezez . (ex , ey , and ez are unit vectors in
the x, y, andz directions.! The relaxation timet is assumed
04641
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to be a function of the absolute magnitude but not the dir
tion of ve , and is to be determined from Eqs.~2! and~5!–~7!.

When (] f e /]t)5(] f e /]r )50, Eqs.~2!, ~6!, and~7! give

f e5 f e01
et

me
Ez

] f e0

]vez
5 f e02

et

kBT
Ezf e0vez. ~8!

Combining Eqs.~5!–~8!, noting thatuveu5uve8u, and using the
relation @1,3#

12
vez8

vez
512cosq2sinq cosw tanc, ~9!

wherec is the angle betweenve andez , we obtain

t~ve!5
1

niveQei
~10!

Qei[E
0

2pE
0

p

~12cosq!
]sei

]V
sinqdq dw. ~11!

~Without loss of generality, we have chosenw to be the angle
between the plane formed byve andve8 and the plane formed
by ve and ez @1,3#.! Qei is the cross section for momentum
transfer from electrons to ions. Equations~7!, ~8!, ~10!, and
~11! are an exact solution to the Boltzmann equation fo
nondegenerate Lorentz plasma in the weak-electric-fi
limit. The solution is identical to that developed by Loren
@1#, Marshak@3#, and Conwell and Weisskopf@7#, and used
by Brooks and Herring@12,13# and Lee and More@57#.

Defining j5 je5 j ezez to be the current density in the d
rection of the field, we have

j ez52eE
2`

` E
2`

` E
2`

`

f evezdvexdveydvez. ~12!

Combining Eqs.~7!, ~8!, ~10!, and~12! we find

j ez5sEz , ~13!

where

s[
e2

nikBT E
2`

` E
2`

` E
2`

` f e0

veQei
vez

2 dvexdveydvez. ~14!

The electron-ion interactions are accounted for in
momentum-transfer cross sectionQei .

To calculateQei , we assume each electron is scattered
a screened Coulomb potential centered on a fixed ion,

V~r !52
Ze2

r
expS 2r

l D . ~15!

Herer is the distance from the ion scattering center andl is
a screening length. Following Refs.@57,74,103,104# we set

l5lD[F S 4pnee
2

kBT D1S 4pniZ
2e2

kBT D G21/2

when lD>a,

~16!
7-3



.

th
io

b-
gy

d

by
al
ec-
he

STYGAR, GERDIN, AND FEHL PHYSICAL REVIEW E66, 046417 ~2002!
l5a[S 4

3
pni D 21/3

when lD<a. ~17!

lD is the plasma Debye length anda is the ion-sphere radius
As demonstrated in Refs.@28,51,103,105–109#, the as-

sumption of Debye screening becomes invalid when
plasma ions are strongly coupled; i.e., when the ion-
Coulomb-coupling parameterG.1, where

G[
~Ze!2

akBT
5S 4

3
pni D 1/3~Ze!2

kBT
. ~18!

G is the ratio of the characteristic ion-ion Coulom
interaction energy to the ion thermal ener
E
l
E
e

tio

-

m

-

04641
e
n

@28,51,74,78,105#. Equations~16!–~18! can be combined to
give

G5
Z

3~Z11! S a

lD
D 2

. ~19!

Hence lD5a in the transition region between weak an
strong coupling@28,105#.

Assuming the electron-ion interaction potential given
Eq. ~15!, Dalitz @110# calculates the quantum-mechanic
scattering amplitude of a nonrelativistic electron in the s
ond Born approximation. Using this result, we obtain t
differential electron-ion scattering cross section]sei /]V to
orderZ3e6,
]sei

]V
5

Z2e4x4

4me
2ve

4~11x2a2!2 1F Z3e6x4

\me
2ve

5a~11x2a2!~414x21x4a2!1/2arctan
xa

~414x21x4a2!1/2G , ~20!
to

he

the
in

c
y.
where

x[2kl, ~21!

k[
meve

\
, ~22!

a[sin
q

2
, ~23!

and l is the screening distance defined by Eq.~15!. The
reduced mass is approximated asme . ~The differential cross
section]sei /]V is also given in Ref.@111#; however, the
sign before the second term on the right-hand side of
~10.136! in Ref. @111# is incorrect. We expect on physica
grounds that the second term on the right-hand side of
~20! is positive for an attractive potential, and negative wh
the potential is repulsive.! Equation~20! is consistent with
scattering amplitudes presented in Refs.@37,111–115#. It ap-
pears that the result obtained in the first Born approxima
@the first term on the right-hand side of Eq.~20!# was origi-
nally given by Wentzel@116#.

Equation~20! can be simplified by noticing that the arc
tangent argument has a maximum value of 821/2 at x521/2

anda51 @37#. Hence to within an error<4% we can write

arctan
xa

@414x21x4a2#1/2'
xa

@414x21x4a2#1/2. ~24!

Furthermore, as shown at the end of this section, the assu
tion Q@1 @Eq. ~1!# implies that characteristic values ofx are
much greater than 1. Whenx>10, the error introduced by
Eq. ~24! is <0.3%.

Combining Eqs.~11! and~20!–~24!, and making the sub
stitution sin2(q/2)5(12cosq)/2, gives@117#
q.

q.
n

n

p-

Qei5
4pZ2e4

me
2ve

4 F ln~11x2!1/22S 1

2D S x2

11x2D G
1

8pZ3e6

lme
3ve

6 F ~414x2!

~413x2!
lnS 414x21x4

414x2 D 1/2

2
x2 ln~11x2!1/2

~413x2! G . ~25!

„WhenZ51 andl5lD , Eq. ~25! is identical to Eq.~6.11!
in Ref. @54# except the sign before the term proportional
e6 in Ref. @54# is incorrect.Qei is given to ordere8 in Eq.
~7.64! of Ref. @62#; however, this expression also has t
incorrect sign before thee6 term; in addition, thee8 term
does not include one of the two contributions obtained in
second Born approximation, and the contribution obtained
the third.…

Since~as we shall show! x@1, we can express Eq.~25! as

Qei5
4pZ2e4

me
2ve

4 ln L~ve!, ~26!

where

ln L~ve![~ ln x2 1
2 !1F 2Ze2

lmeve
2 ~ ln x2 ln 24/3!G . ~27!

The error due to approximating Eq.~25! as Eqs.~26! and
~27! is less than 1% whenx>10 and (2Ze2/lmeve

2)<0.5.
~The quantity 2Ze2/lmeve

2 is the ratio of the characteristi
electron-ion potential energy to the electron kinetic energ!
Equation~27! is consistent with the approximation forQei
given in Ref.@37#.

Combining Eqs.~7!, ~14!, and ~26! gives the electrical
conductivity:
7-4
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s5
me

7/2

3~2p!3/2Ze2~kBT!5/2E
0

` ve
7

ln L~ve!
expS 2meve

2

2kBT Ddve .

~28!

To evaluate this integral, we note that the functi
ve

7 exp(2meve
2/2kBT) is peaked, and find that its maximum

value occurs atve1[(7kBT/me)
1/2. †There appears to be

misprint in Ref. @7#, where this speed is given a
(6kBT/me)

1/2.‡ We use here the subscript 1 because ot
values of the electron speed, labeled 2 and 3, are define
Sec. III. Whenx52k1l@1, wherek1[meve1 /\, the func-
tion lnL(ve) is slowly varying in the vicinity ofve1 , i.e.,
over the interval ofve that contributes most to the integra
In this limit we can approximates by assuming that lnL(ve)
is constant and equal to its value atve5ve1 @7#, which we
label as lnL1. Hence

s5
2~2kBT!3/2

p3/2Ze2me
1/2 ln L1

, ~29!

where

ln L1[~ ln x12 1
2 !1F 2Ze2

lmeve1
2 ~ ln x12 ln 24/3!G , ~30!

x1[2k1l[
2meve1l

\
, ~31!

ve1[S 7kBT

me
D 1/2

. ~32!

The two terms on the right-hand side of Eq.~30! are obtained
in the first and second Born approximation
respectively. Equation~29! is identical to the conductivity
of a nondegenerate Lorentz plasma given
Refs.@2,3,5–7,10–13,15,26,57,86#, except that the Coulomb
logarithm defined by Eqs.~30!–~32! differs from those ob-
tained previously.

It is often convenient to express the quantities lnL1 and
x1 in terms ofZ, G, and Q. When G<Z/3(Z11), thenl
5lD and we have

ln L15~ ln x12 1
2 !1F @12~Z11!G3#1/2

7Z3/2 ~ ln x12 ln 24/3!G ,
~33!

x152k1lD5S 733p2

2 D 1/6S Z5/3

Z11D 1/2S Q

G D 1/2

. ~34!

WhenG>Z/3(Z11), thenl5a and

ln L15~ ln x12 1
2 !1F2G

7Z
~ ln x12 ln 24/3!G , ~35!

x152k1a5S 7334p2

2 D 1/6

Z1/3Q1/2. ~36!
04641
r
in

,

As asserted earlier, we see from Eqs.~34! and ~36! that as-
suming Q@1 implies x1@1, whether l5lD or l5a.
~WhenQ>2, x1>10.2.)

III. THEORETICAL CONDUCTIVITY TENSOR „BÅ0…

The results of the preceding section can be generalize
obtain explicit analytic expressions for the electrical cond
tivity and resistivity tensors of a plasma with a density g
dient and a magnetic field.

We again work in the reference frame where the ion-flu
velocity equals zero. The results given in Secs. III A a
III B are also directly applicable whenu j i u!u jeu, which is a
good approximation in the frame where the total fluid m
mentum equals zero. This is often the case in a steady-s
system. However, the results of these sections must be
with care. For example, we consider a plasma with no pr
sure gradients,E perpendicular toB, and electron and ion
collision frequencies much less than the electron and
cyclotron frequencies, respectively. In such a system
electrons and ionsEÃB drift at the same velocity, andj i5
2 je . In the frame where the ion-fluid velocity equals zer
j i5 je50 andE50 @10,26#.

A. Weak magnetic field „vcet›1…

Using ideas developed in Sec. II and by Lorentz@1#, Mar-
shak@3#, Kittel @17#, Kubo @27#, and Lee and More@57#, we
obtain, after some algebra@118#, the following results in the
weak-electric-field limit. Without loss of generality we a
sume the magnetic fieldB5Bzez . We express the results i
terms of a generalized electric fieldEg @4,19#, which we
define in Eq.~48!. We assume that the direction ofEg with
respect toB is arbitrary, so thatEg5Egxex1Egyey1Egzez .

We find @118# that the second-rank conductivity tensorsO
is given by

je5sO Eg , ~37!

where

sO [S s' 2s∧ 0

s∧ s' 0

0 0 s i

D , ~38!

s'[
s

11vce
2 t1

2 , ~39!

vce[
eBz

mec
, ~40!

t1[t~ve1!5
me

2ve1
3

4pniZ
2e4 ln L1

, ~41!

s∧[
bvcet2s

11vce
2 t2

2 , ~42!
7-5
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b[
63p1/2 ln L1

2651/2 ln L2
, ~43!

ln L2[ ln L~ve2!, ~44!

ve2[S 10kBT

me
D 1/2

, ~45!

t2[t~ve2!5
me

2ve2
3

4pniZ
2e4 ln L2

, ~46!

s i[s, ~47!

Eg[E1
kBT

nee
S ]ne

]r D . ~48!

The quantitiess, ln L1, andve1 are given by Eqs.~29!, ~30!,
and~32!, respectively;t1 andt2 are defined using Eqs.~10!
and ~26!; and lnL2 is defined using Eq.~27!.

The above expression forsO is similar in form to that
given by Urpin and Yakovlev@45#, Adamyan@77#, and oth-
ers. s' is the conductivity associated with current flowin
perpendicular toB and parallel toEg , s∧ with current flow-
ing perpendicular to bothB and Eg , and s i with current
flowing parallel toB. We find s i is independent ofB, as
expected. Equations~39! and ~42! are valid whenvcet1 ,
vcet2&1 @118#.

The second-rank resistivity tensorhO is defined by

hO je5Eg , ~49!

where

hO [sO 21[S h' h∧ 0

2h∧ h' 0

0 0 h i

D ~50!

[S s'

s'
2 1s∧

2

s∧

s'
2 1s∧

2 0

2s∧

s'
2 1s∧

2

s'

s'
2 1s∧

2 0

0 0
1

s i

D . ~51!

In the limit vcet1 , vcet2→0, we have from Eqs.~39!–~47!,
~50!, and~51! ~to first order inBz)

h'5
1

s
, ~52!

h∧5
315p

512 S ln L1

ln L2
D 2 Bz

neec
, ~53!

h i5
1

s
. ~54!
04641
The transverse resistivityh∧ differs by the factor
(ln L1 /ln L2)

2 from the results given in Refs.@26,57# for a
Lorentz plasma, since in the previous work the Coulom
logarithms are evaluated at the speed corresponding to
average electron thermal energy.

B. Strong magnetic field„vcetš1…

When vcet(ve)@1 for characteristic values ofve , we
find that the conductivity tensor elementss' , s∧ , and s i

can be expressed as follows@118#:

s'5S ln L1

48 lnL3
D s

vce
2 t3

2 , ~55!

ln L3[ ln L~ve3!, ~56!

ve3[S kBT

me
D 1/2

, ~57!

t3[t~ve3!5
me

2ve3
3

4pniZ
2e4 ln L3

, ~58!

s∧5
neec

Bz
, ~59!

s i5s. ~60!

The quantitiess and lnL1 are given by Eqs.~29! and ~30!,
respectively; lnL3 is defined using Eq.~27!; and t3 is de-
fined using Eqs.~10! and ~26!. Equations~55! and ~59! are
applicable whenvcet3@1 @118#.

The resistivity tensorhO is obtained from Eqs.~50!, ~51!,
and ~55!–~60!. In the limit vcet3→`, we have

h'5
32

3p S ln L3

ln L1
D 1

s
, ~61!

h∧5
Bz

neec
, ~62!

h i5
1

s
. ~63!

The ratioh' /h i differs by the factor (lnL3 /ln L1) from the
results given in Refs.@10,26,57# for a Lorentz plasma, since
in the previous work the Coulomb logarithms are evalua
at the speed corresponding to the average electron the
energy.

IV. LIMITS OF APPLICABILITY

The results of Secs. II and III assume the Maxwe
Boltzmann distribution function, the Boltzmann collisio
term, the scattering-potential model described in Sec. II,
the Coulomb logarithm given by Eq.~27!. They also assume
that the integration of Eq.~28! described in Sec. II, and simi
lar integrations required to develop Eqs.~39!, ~42!, ~55!, and
~59!, are reasonably accurate. In this section
7-6
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discuss the limits of applicability of these assumptions.
particular, we demonstrate that the classical distribution
valid to first order whenQ>2, and that the Boltzmann col
lision term, the scattering potential model, and the Coulo
logarithm require weak electron-ion coupling (G/Z!1).

A. Maxwell-Boltzmann distribution

To estimate the range of temperatures over which
Maxwell-Boltzmann distribution is valid, we use the Ferm
Dirac distribution to calculate numerically the average el
tron kinetic energy as a function ofQ. When Q510 the
average energy is within 1% of 3kBT/2, the Maxwellian re-
sult. When Q52 the average is 5% above the classi
value; whenQ51 the average is 13% higher. We conclu
that the Maxwell-Boltzmann distribution is a reasonable
proximation forQ as low as 2. Since we assume the ele
trons are nonrelativistic, we also require thatkBT!mec

2

@i.e., (G2Q/Z10/3)@(27/34p2)1/3(e2/c\)2;331025].
The electron component of the screening distance gi

by Eq. ~16! is the electron Debye lengthlD,e
[(kBT/4pnee

2)1/2. This expression assumes that the el
trons are Maxwellian. Assuming instead the Thomas-Fe
potential and Fermi-Dirac distribution, we find that whe
Q>2, the error inlD,e is &5%. This introduces a&1% error
in the Coulomb logarithm. Hence it appears that Eq.~16! is a
valid approximation forQ as low as 2.

B. Boltzmann collision term

Equation~3! assumes molecular chaos and that partic
interact only through binary collisions@27,98–100,119#. We
expect these assumptions to be most reasonable whe
characteristic momentum-transfer cross section is much
thanpa2 @27,99,119#,

Qei~ve1!5
4pZ2e4 ln L1

me
2ve1

4 !pa2. ~64!

Expressed in terms ofG, Eq. ~64! becomes

S G

ZD 2

!
49

4 lnL1
. ~65!

Equations~64! and~65! are identical to the condition that th
mean free path@niQei(ve1)#21@4a/3. G/Z, the electron-ion
Coulomb-coupling parameter, is the ratio of the characte
tic electron-ion Coulomb-interaction energy to the electr
thermal energy@105#. Hence it appears that the Boltzman
collision term is applicable when electron-ion coupling
weak.

For the molecular-chaos assumption to be applicable,
also require that ion positions be weakly correlated, i.e.,
the ion structure factor be;1. We estimate the effect of ion
correlations using the effective static structure factorS9(q)
512exp(213a2q2/3G) given in Refs. @86,87#, where q
[2k sin(q/2). Using Eqs.~11!, ~26!, and the total scattering
cross section obtained from Eq.~20!, we find that when the
plasma ions are strongly coupled (l5a), the characteristic
value of a2q252 lnL1. Hence S9(q);1 when G
04641
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!26(lnL1)/3. Using the conductivity model developed
Refs. @80,81,83,86–88#, we estimate that the error intro
duced in the conductivity by neglecting ion correlations
less than exp@226(lnL1)/3G# when this quantity is much
less than 1. When the plasma ions are weakly coupledl
5lD), then to an extremely good approximationS9(q)51.

C. Scattering-potential model

The scattering potential model defined by Eqs.~15!–~17!
assumes that when ion-ion coupling is strong, the effec
screening lengthl5a @Eq. ~17!#. Calculations by Hubbard
@28,44,58# show that this simple model leads to an error
the Coulomb logarithm lnL1 of at most210%,112% when
G/Z51, Q52, and 1<G<5. The error is reduced asG/Z is
decreased andQ increased. At larger values ofG, the screen-
ing length becomes significantly less thana; at G540 the
value consistent with Hubbard’s calculations is 0.a
@28,44,58#.

Equation~17! also assumes that the electrons form a u
form background of negative charge that neutralizes the
space charge@28,51,57,74,103–109#. This is valid when the
characteristic electron-ion Coulomb-interaction energy
much less than the average electron thermal energy@105#,

Ze2

a
!

3kBT

2
. ~66!

Expressed in terms of the electron-ion coupling parame
G/Z, Eq. ~66! becomes@105#

G

Z
!

3

2
. ~67!

@Equations ~66! and ~67! are identical to the condition
(lD,e /a)2@2/9, which is given in terms of the electron De
bye length.# A uniform electron background can also be a
sumed when

Z1/3Q1/2&S 213p4

37 D 1/6

, ~68!

i.e., the electron thermal de Broglie waveleng
h/(3mekBT)1/2*a.

In addition, Eqs.~15!–~17! implicitly assume that the
magnetic field does not affect the electron-ion scatter
cross section. This is valid when both l
!(3kBT/me)

1/2(mec/eB) ~i.e., the screening distancel is
much less than the electron Larmor radius@34,82#!, and
kBT@\vce ~the magnetic field is nonquantizin
@52,55,80,81,87,88#!.

D. Coulomb logarithm

As discussed in Sec. I, it has been assumed by sev
authors that a transition takes place between class
and quantum-mechanical scattering at temperatu
that range from (2.73103)Z2 to (5.83105)Z2 K
@5,8,10,15,26,36,37,40,57#. To determine in a more quantita
tive manner when a quantum-mechanical description is
7-7
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quired, we consider Eq.~30!. The first term on the right-hand
side is obtained in the first Born approximation; the te
proportional toZe2 is obtained in the second. We assum
that the accuracy of this equation is given by the ratiod of
these terms@111#,

d[S 2Ze2

lmeve1
2 D S ln x12 ln 24/3

ln x12 1
2

D . ~69!

Since x1@1, d is approximately equal to the ratio of th
characteristic electron-ion potential energy to the electron
netic energy whenve5ve1 . The ratiod is reduced asl is
increased~which is counterintuitive since the scattering p
tential increases everywhere asl increases!. Hence it ap-
pears that Eq.~30! is most valid in the high-temperatur
low-density limit, i.e., whenl→`.

We do not prove thatd!1 is a sufficient condition for the
validity of Eq. ~30!, but propose this as a plausib
hypothesis. We show in Sec. V that this assumpt
appears consistent with experimental results, and is m
accurate than the quantum-mechanical model presente
Refs. @5,8,10,15,26,40,57#. We also note that~as is well
known! when l→`, ]sei /]V @Eq. ~20!# approaches the
exact nonrelativistic quantum-mechanical Rutherford cr
section obtained by Gordon@120#.

When G<Z/3(Z11) ~i.e., when ion-ion coupling is
weak!, thenl5lD andd is obtained from Eq.~33!,

d5
@12~Z11!#1/2G3/2

7Z3/2 S ln x12 ln 24/3

ln x12 1
2

D . ~70!

In this case it appears that the Born approximation is alw
a reasonable estimate: since the maximum value oG
5Z/3(Z11), d never exceeds 5%. WhenG>Z/3(Z11)
~ion-ion coupling is strong!, thenl5a, d is obtained from
Eq. ~35!,

d5
2G

7Z S ln x12 ln 24/3

ln x12 1
2

D , ~71!

and we expect the Born approximation to be valid when

G

Z
!

7

2
, ~72!

i.e., when electron-ion Coulomb coupling is weak.~As noted
earlier, the conditions given by Eqs.~65!, ~67!, and~72! are
consistent.!

The discrepancy between Eqs.~69!–~71! and assumptions
made previously@5,8,10,15,26,36,37,40,57# can be signifi-
cant. We consider, for example, a plasma withZ510, G
55, andQ550. The temperature of such a system is
3105 K. For these conditionsd50.13, which suggests tha
the Born approximation would be applicable. However,
cording to Refs.@8,10#, electron-ion scattering in such
plasma does not require a quantum-mechanical treatmen
temperatures as high as (4.23105)Z254.23107 K. Hence,
assuming the Born approximation is valid whend!1, we
find that electron-ion scattering can be quantum mechan
04641
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at temperatures orders of magnitude less than previo
given. ~This is discussed further in Sec. V A.!

E. Integration over electron speed

The integration of Eq.~28! discussed in Sec. II assume
ln L(ve) is constant. To estimate the resulting error, we in
grate Eq.~28! numerically using Eq.~27! for ln L(ve), from
ve(min) to `, whereve(min) is the minimum speed for which
Eq. ~27! is estimated to be valid.@We cannot integrate Eq
~28! numerically from 0 tò since Eq.~27! is developed in
the Born approximation, and as discussed above, appea
be valid only when 2Ze2/lmeve

2!1. The contribution to the
integral from 0 tove(min) is negligible if ve(min)!ve1 and
ln L(ve) is reasonably behaved.# When G/Z<1, Q>2, and
ve(min)5ve1/2, the numerical result agrees with Eqs.~29!–
~32! to within <3%. Similar considerations apply to the ca
culations leading to Eqs.~39!, ~42!, ~55!, and~59!.

V. RESULTS

A. BÄ0

In Tables I and II we compare the results of Sec. II
other theoretical predictions and to conductivity measu
ments. Because the effects of electron-electron collisions
expected to be significant for some of the plasmas con
ered, we correct the conductivity given in Sec. II f
electron-electron scattering, and give corrected values in
tables. We define the corrected conductivity as

sC[gs, ~73!

wheres is given by Eq.~29!. Following Refs.@67,73#, we
make the simplifying assumption thatg is a function only of
Z and Q ~i.e., we neglect the dependence ofg on G!. We
approximateg as

g5g`1
~12g`!

F110.6 lnS Q

20
11D G ~74!

g`[
3p

32 S 11
6.453Z2114.669Z

2.697Z2111.615Z17.645D . ~75!

Equation ~74! was developed empirically to be consiste
with the theoretical results shown in Fig. 4 of Ref.@90#; the
agreement is to within62% for 2.4<Q<1100. Comparing
Eq. ~74! with other calculations@62#, we estimate the uncer
tainty in g to be ;10%. Equation~75! is taken from Ref.
@61# and is consistent to within 1% with results presented
Refs.@5,6,10,11#.

We include in the tables a corrected Spitzer-Ha¨rm conduc-
tivity that we define as

sSHC[gsSH[g
2~2kBT!3/2

p3/2Ze2me
1/2 ln LSH

, ~76!

ln LSH[ lnF11S lD

pmin
D 2G1/2

, ~77!
7-8
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TABLE I. Comparison of measured conductivities of shock heated xenon with theoretical predictions. The measurements were p
by Mintsev, Fortov, Pavlov, and Gryaznov@93,94#. The values ofsSHC, sMSHC, sPC , andsC are given by Eqs.~76!, ~82!, ~84!, and~73!,
respectively.@To convert from cgs-Gaussian units~statohm cm!21 to ~V cm!21, the theoretical conductivities have been multiplied
1.113310212.] The ionization charge states listed in the first column were inferred from the measurements@94# and are used for the
conductivity calculations. The quantityd @Eq. ~69!# is the ratio of the Coulomb-logarithm term obtained in the second approximation to
obtained in the first. The correction for electron-electron scatteringg @Eq. ~74!# ranges from 0.90 to 0.97 for the plasmas listed.

Z
T

(103 K)
ne

~cm23! G G/Z Q d
sexpt

~V cm!21
sSHC

~V cm!21
sMSHC

~V cm!21
sPC

~V cm!21
sC

~V cm!21

1.8 47 431020 1.12 0.62 20.5 0.15 4706190 1600 845 522 366
2.4 70 631020 1.40 0.58 23.3 0.15 7006280 2170 1110 676 484
2.8 95 631020 1.33 0.48 31.6 0.12 5506220 2350 1340 830 628
2.1 65 1.031021 1.43 0.68 15.4 0.17 6206250 2720 1270 788 532
1.9 62 1.331021 1.38 0.73 12.3 0.18 6706270 3040 1370 876 573
2.2 70 1.531021 1.64 0.75 12.6 0.18 7006280 3490 1450 895 582
1.5 64 2.031021 1.04 0.69 9.53 0.17 7506300 3480 1780 1265 830
1.3 50 3.431021 1.25 0.96 5.23 0.23 8306330 4820 1820 1326 738
2.2 76 2.431021 1.77 0.80 10.0 0.20 11006440 4570 1740 1089 684
1.6 59 4.331021 1.63 1.02 5.27 0.24 13006520 6080 1990 1363 740
1.1 44 4.531021 1.18 1.08 3.81 0.25 9706390 5570 1960 1541 784
0.9 37 6.031021 1.11 1.23 2.65 0.27 7306290 6610 2090 1845 824
0.7 29 4.831021 0.865 1.24 2.41 0.27 6806270 5460 1870 1824 792
f

tity
e
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ter

qs.
-
4.2

ra-
where

pmin5pclassical when pclassical>pqm, ~78!

pmin5pqm when pclassical<pqm, ~79!

pclassical[
Ze2

3kBT
, ~80!

pqm[
\

2~3mekBT!1/2[z
h

~3mekBT!1/2. ~81!

sSH is the Lorentz-plasma conductivity given in Refs.@8,
10,11#; g is defined by Eq.~74!; lD is the Debye length
given by Eq.~16!; z[1/4p; andh is Planck’s constant. The
quantity pclassical[p90@ve5(3kBT/me)

1/2#, wherep90 is the
classical impact parameter that results in a 90° deflection
an electron with speedve @2,8,10,11#. Hencepclassicalis equal
04641
or

to p90 at the speedve5(3kBT/me)
1/2 that corresponds to the

average electron thermal energy. The quan
h/(3mekBT)1/2 in Eq. ~81! is the electron thermal de Brogli
wavelength.

Since Refs.@8,10,11# assumelD /pmin@1, the Coulomb
logarithm given in these References is approximated
ln(lD /pmin). Equations~77!, ~78!, and ~80! give the exact
expression@2# for classical scattering by an unscreened Co
lomb potential assuming the maximum impact parame
equalslD , and that the effective classical value ofpmin can
be approximated aspclassical@10#. The correction topmin in-
dicated by Eqs.~79! and ~81! is introduced in Ref.@8,10# to
account heuristically for quantum effects. According to E
~78!–~81!, the transition from classical to quantum
mechanical scattering occurs at a temperature of (
3105)Z2 K @8,10#. Other authors have used this model@Eqs.
~78!–~81!# with different values for the constantz
@5,15,26,40,57#; in these discussions, the transition tempe
ture varies from (2.73103)Z2 to (5.83105)Z2 K.
ts were

by

that
TABLE II. Comparison of measured conductivities of ohmically heated aluminum with theoretical predictions. The measuremen
performed by Benage, Shanahan, and Murillo@95–97#. The values ofsSHC, sMSHC, sPC , andsC are given by Eqs.~76!, ~82!, ~84!, and
~73!, respectively.@To convert from cgs-Gaussian units~statohm cm!21 to ~V cm!21, the theoretical conductivities have been multiplied
1.113310212.] The ionization charge states listed in the first column were inferred from the measurements@97# and are used for the
conductivity calculations. The quantityd @Eq. ~69!# is the ratio of the Coulomb-logarithm term obtained in the second approximation to
obtained in the first. The correction for electron-electron scatteringg @Eq. ~74!# ranges from 0.94 and 0.98 for the plasmas listed.

Z
T

(103 K)
ne

~cm23! G G/Z Q d
sexpt

~V cm!21
sSHC

~V cm!21
sMSHC

~V cm!21
sPC

~V cm!21
sC

~V cm!21

2.2 104 3.0031022 3.00 1.36 2.55 0.31 20006300 24900 4450 3130 1360
2.5 146 2.0131022 2.31 0.92 4.67 0.22 14956220 15500 4660 3266 1830
3.1 201 1.1831022 2.01 0.65 9.16 0.16 13706210 11200 4700 3206 2130
3.8 253 7.8931021 1.96 0.52 15.1 0.13 15456230 9720 4690 3131 2250
4.2 285 6.4731021 1.93 0.46 19.4 0.11 20006300 9230 4740 3137 2340
7-9
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We also include in the tables a modified Spitzer-Ha¨rm
conductivity that we define as

sMSHC[gsMSH[g
2~2kBT!3/2

p3/2Ze2me
1/2 ln LMSH

, ~82!

ln LMSH[ ln F11S l

pmin
D 2G1/2

. ~83!

sMSHC is identical tosSHC except that Eqs.~76! and ~77!
assume that the screening distancel always equalslD ,
whereas Eqs.~82! and~83! assumel is defined by Eqs.~16!
and ~17!.

In addition, we list in Tables I and II the conductivit
calculated by Potekhin, Baiko, Haensel, Yakovlev, and K
minker @80,81,83,86–88#. This model was developed prima
rily to calculate transport coefficients of degenerate rela
istic electrons in neutron-star envelopes, and according
Ref. @88# provides order-of-magnitude estimates in the no
degenerate regime. We definesPC as

sPC[gsP , ~84!

wheresP is calculated using theFORTRAN source code avail-
able from Ref.@88#.

The conductivity measurements listed in Table I were p
formed on shock-heated xenon by Mintsev, Fortov, Pav
and Gryaznov@93,94#. The experimental error is estimated
30–50 %@94#; a value of 40% is used for the errors listed
the table. The measurements in Table II were performed
ohmically-heated aluminum by Benage, Shanahan,
Murillo @95–97#. The experimental error for these measu
ments is estimated as 15%@95–97#. The charge states give
in Tables I and II were inferred from the measureme
@94,97# and are used for the calculations ofsSHC, sMSHC,
sPC , andsC .

There appears to be a large discrepancy between the
surements andsSHC. There is better agreement wit
sMSHC, which suggests that the scattering-potential mo
given by Eqs.~16! and ~17! is more accurate than simpl
assumingl5lD . @For all of the measurements listed
Tables I and II,G.Z/3(Z11); hence all of the values o
sMSHC andsC listed assumel5a.] ComparingsMSHC and
sC with sexpt we see that agreement with experiment is b
ter for sC , which suggests the Born approximation is mo
accurate than the heuristic quantum-mechanical model g
by Eqs.~78!–~81!.

According to Eqs.~78!–~81!, the Coulomb logarithm can
be calculated classically for all the plasmas listed in Table
and II @8,10,26#. Assumingd!1 is a sufficient condition for
the validity of Eq. ~30!, we find instead that the Coulom
logarithm is quantum mechanical for all of the results
these tables, at temperatures as much as a factor of 35
than the transition between classical and quantum scatte
estimated in Refs.@8,10,26#. ~As discussed in Sec. IV, thi
discrepancy can, for other plasma conditions, exceed
orders of magnitude.! The model given by Eqs.~78!–~81!
cannot be improved simply by changing the constantz in Eq.
~81!, as is done in Refs.@5,15,40,57#: increasingz would
04641
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either increase or leave unchanged each of the value
sSHC and sMSHC listed in the tables; decreasingz would
have no effect.

These results appear inconsistent with the discussio
Refs. @66,69,89,90#, which suggests that whenZ51, G,1,
and Q.1, the Born approximation is not applicable whe
T!1.73105 K ~i.e., G2Q@1), and that at these tempera
tures a quasiclassical calculation is required. We find inst
that whenZ51, the Born approximation is valid over th
entire parameter regime defined byG&1 andQ*2, and not
just whenT.1.73105 K. However, the resulting discrep
ancy in the conductivity is not great, which indicates there
a large range over which the quasiclassical and Born ca
lations are both valid. For example, whenZ51, T5104 K,
andne5131017 cm23 (G50.125,Q51100), the contribu-
tion to the Coulomb logarithm from the second Born a
proximation is 3%; hence we expect the approximation to
valid. Neglecting electron-electron collisions, we find th
for this plasma the conductivity@Eq. ~29!# is 50 ~V cm!21;
the model described in Refs.@66,69,89,90# obtains 63
~V cm!21. The discrepancy is reduced asG is decreased.

ComparingsPC @Eq. ~84!# andsC with sexpt in Tables I
and II, we see thatsC appears, on average, to be in som
what better agreement with experiment.@This assumes Eq
~74! is an accurate correction for electron-electron scat
ing.# For the 18 measurements listed in these tables,
square root of the average value of@(sPC2sexpt)/sexpt#

2 is
81% ; for sC , this quantity is 28%. WhenG/Z&1 andQ
*2, there are four significant differences betweensPC and
sC . The first is thatsPC is calculated in the first Born ap
proximation whereassC is calculated in the second. Th
quantity d @Eq. ~69!#, the ratio of the Coulomb-logarithm
term obtained in the second approximation to that obtai
in the first, is listed in Tables I and II, and for the plasm
considered is found to be as large as 30%.

The second difference is due to the scattering potent
assumed by the two models. The model described in Se
@Eqs. ~16! and ~17!# finds that for all the plasmas listed i
Tables I and II,l5a. This appears to be more accurate th
the model assumed in Refs.@80,81,83,86–88#, which finds
that for the plasmas listed the effective screening distanc
significantly less thana. The third difference is that we as
sume a Maxwell-Boltzmann distribution for the electron
whereas Refs.@80,81,83,86–88# assume the more-accura
Fermi-Dirac distribution. The fourth is that we integrate E
~28! analytically as described in Sec. II, whereas in Re
@80,81,83,86–88# the calculations are performed nume
cally. The third and fourth differences together have a 4
effect on the calculated conductivity for the first plasm
listed in Table II, and a 1–3 % effect for the other entries
Tables I and II.

We find that even though the Ioffe Institute mod
@80,81,83,86–88# was developed primarily for degenera
systems, it is significantly more accurate than any poss
version of the Spitzer-Ha¨rm conductivity for the nondegen
erate plasmas listed in Tables I and II. We also note that
Ioffe model is considerably more accurate than stated in R
@88#, and that it would be straightforward to improve its a
curacy for nondegenerate systems.
7-10
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TABLE III. Calculated elements of the resistivity tensor for a Lorentz plasma. The Coulomb logari
ln LB and lnLLM are defined in Refs.@26# and@57#, respectively; lnL1, ln L2, and lnL3, are defined by Eqs
~30!, ~44!, and ~56!. The quantityh0 is given by Eq.~90!. Without loss of generality we have assumedB
5Bzez . In the high-temperature low-density limit, the quantities lnLB , ln LLM , ln L1, ln L2, and lnL3,
converge to the same value.

Braginskii @26# Lee and More@57# Secs. II and III

h i h0 ln LB h0 ln LLM h0 ln L1

h'

hi
~Bz→0! 1 1 1

h∧ (Bz→0)
1.98Bz

neec

1.9328Bz

neec

315p

512 S ln L1

ln L2
D2 Bz

neec

h'

hi
~Bz→`!

32

3p
3.32

32

3p S ln L3

ln L1
D

h∧ ~Bz→`!

Bz

neec

Bz

neec

Bz

neec
n

,
n

te

o
re

fe
tu
th
d
o
uc
f-
s
e
e
o

ho
n-
te

I

th

te,
gra-

n-

ur-

e
cat-
Assuming a 10% uncertainty in each of the quantitiesZ,
T, ne, g, ands, we find that the conductivitysC is consistent
~to within the error insexpt) with all of the measurements i
Table I, and three of the five in Table II. BecausesC is in
reasonable agreement with most of the measurements
expect it to provide a useful analytic estimate for the co
ductivity of a Lorentz plasma whenZ*1, G/Z&1, andQ
*2. The minimum value of the Coulomb logarithm lnL1
@Eq. ~30!# whenZ>1, G/Z<1, andQ>2 is 1.9.~The mini-
mum is achieved whenZ51, G51/6, andQ52.) Given the
approximations and uncertainties involved, this is consis
with the assumption by Lee and More@57# that, in general,
the minimum value of the Coulomb logarithm is 2.

We note some care must be taken when comparing c
ductivity models with each other and with experimental
sults. For example, for each of the conductivitiessexpt listed
in Table I, the xenon shock velocity was measured to in
the xenon-plasma mass density and pressure. These, in
were used in an equation-of-state calculation to infer
temperature and ionization charge state. When the mass
sity and inferred temperature are subsequently input t
computational algorithm to determine a theoretical cond
tivity, the computation, if it includes a different equation-o
state calculation, may find a charge state that is not con
tent with the one originally used to interpret th
measurements. Comparisons between theory and experim
and between different theoretical models are, of course, m
meaningful when the same charge state is used throug
~as in Tables I and II!, to eliminate discrepancies in the co
ductivity due simply to differences in the equations of sta

B. BÅ0

Braginskii @26# and Lee and More@57# give explicit ex-
pressions for the resistivity tensor of a Lorentz plasma.
Table III we compare these results in the limitsBz→0 and
Bz→` to the predictions of Secs. II and III.

The Braginskii tensor elements can be expressed in
notation of Secs. II and III by combining Eqs.~2.2e! and
04641
we
-

nt

n-
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rn,
e
en-
a
-
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nt,
re
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n

e

~4.30! of Ref. @26#. Assuming the plasma is in a steady sta
electron and ion pressures are scalars, and temperature
dients can be neglected, we find that~in the frame where the
ion-fluid velocity equals zero! these equations give

Eg5h'je'2
h∧

Bz
BÃje'1h ijei , ~85!

where

h'[S 12
4.63vce

2 te
210.0678

vce
4 te

417.482vce
2 te

210.0961D me

tenee
2 , ~86!

h∧[S vcete~1.704vce
2 te

210.0940!

vce
4 te

417.482vce
2 te

210.0961D me

tenee
2 1

Bz

neec
,

~87!

h i[S 3p

32D me

tenee
2 5h0 ln LB , ~88!

te[S 3p

32D me
1/22~2kBT!3/2

p3/2Z2e4ni ln LB
, ~89!

h0[
p3/2Ze2me

1/2

2~2kBT!3/2 . ~90!

Equations~86!–~90! assume the plasma is Lorentzian.„The
calculations by Braginskii include the effects of electro
electron collisions and are more general than Eqs.~86!–~90!.
We present here only the results of Refs.@26# obtained for a
Lorentz plasma.… References@15# and @26# use the notation
1/s' whenh' is intended; Eqs.~85!–~90! have been rewrit-
ten to be consistent with the notation in this paper. The c
rent densitiesjei and je' are parallel and perpendicular toB,
respectively. The Coulomb logarithm lnLB is that given by
Braginskii @26#. ~Reference@26# has two discussions on th
transition temperature between classical and quantum s
7-11
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tering for the Coulomb logarithm. On page 215, this te
perature is given as 5.83105 Z2 K. On page 238, because o
a typographical error, it is not clear whether 2.73103 Z2 or
1.13105 Z2 K is intended.! The quantityte is the relaxation
time defined by Eq.~2.5e! of Ref. @26#.

The Lee-More results are summarized as Eqs.~52! and
~62! in Ref. @57#. These are expressed in terms of the H
coefficient, defined in Ref.@57# asR[h∧ /B. ~The Hall co-
efficient is normally defined as2h∧ /B @77#.! In the nonde-
generate limit, we can express the Lee-More resistivity p
allel to the magnetic field ash0 ln LLM whereh0 is defined
by Eq. ~90!, and the Lee-More Coulomb logarithm lnLLM is
described in Ref.@57#. ~We note that Ref.@57# contains sev-
eral typographical errors and implicit assumptions. There
pear to be sign errors in Eqs.~46! and in some of the previ
ous expressions in Refs.@57#. The sign before the Hal
coefficientsR andR' in Eqs.~52! and~62!, respectively, are
incorrect. The superscriptsj andh are interchanged in Eqs
~58a! and ~58b!, and also in Eqs.~B12! and ~B13!. The ex-
pression 1/s' is used whenh' is intended. Equation~62! in
Ref. @57# is not valid when the Larmor radius is less than t
screening distance of the scattering potential, or when
magnetic field is quantizing, so this equation is not, in fa
valid at arbitrarily strong magnetic fields. Also, the results
Ref. @57# implicitly assume a frame of reference where t
ion-fluid velocity equals zero. In addition, as discussed
Sec. II above, it appears that since the Lee-More model
sumes a Lorentz plasma, it is most accurate when the e
tron and ion temperatures are approximately equal.!

Without loss of generality we assumeB5Bzez for the
results listed in Table III. The predictions of Secs. II and
for h' /h i andh∧ differ somewhat from the earlier calcula
tions. For example, we consider a plasma withZ51, G
50.06, andQ52. Under these conditions, in the limitBz
→` (Bz553109 G) we find thath' /h i52.05, which is
40% less than the value 32/3p53.395 predicted by Bragin
skii @26# and Lee and More@57#. The value 32/3p is also
obtained by Spitzer@10#. Numerical calculations using th
model presented in Refs.@80,81,83,86–88# find that for these
conditionsh' /h i52.09. WhenZ51, G50.06, Q52, and
Bz→0, we find (h∧neec/Bz)51.68, which is 15% and 13%
less than the values given in Refs.@26# and @57#,
respectively. For these conditions, the model descri
in Refs. @80,81,83,86–88# gives (h∧neec/Bz)51.61. In the
high-temperature low-density limit (G!1,Q@1), the Cou-
lomb logarithms lnLB , ln LLM , ln L1, ln L2, and lnL3 con-
verge to the same value, and the quantitiesh' /h i andh∧ as
determined in Secs. II and III agree with the earlier analy
results@10,26,57#.

VI. 17-MA TUNGSTEN Z PINCH

Experiments on theZ accelerator@121–129# are presently
being conducted with a 5.9-mg tungsten-wire-arrayz pinch
that is 1 cm in length and has a 2 cminitial diameter@130–
134#. The measured pinch current rises to its peak value
19 MA in 100 ns; the current at stagnation is;17 MA. The
04641
-
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resistance of the pinch which is of interest for electric
simulations of the pinch-accelerator system@122,128,129#,
can estimated using the results of Secs. II and III.

At stagnation, when the power radiated in x rays by t
pinch reaches its peak value~130 TW @130–136#!, we can
model the pinch plasma as a 0.1-cm-radius, 1-cm-length
inder. We assume the temperature and axial current den
are uniform throughout, and that the electron and ion num
densities are uniform in the axial direction. We estimateT
;2.53106 K ~210 eV!, ni;6.231020 cm23, and Z;31
@130–136#. Since Z@1, we can neglect the effects o
electron-electron collisions on the conductivi
@5,6,10,11,61#. The plasma is not degenerate (Q580) and
electron-ion coupling is fairly weak (G/Z50.3), but ion-ion
coupling is strong (G59). ~Hence the pinch is a nondegen
erate Coulomb liquid.! We approximate the screening di
tance asl5a in accordance with Eq.~17!.

We estimate the resistance in the direction of the pin
current, which we label as being in thex direction. We define
the z direction to be that of the azimuthal magnetic fiel
Assuming that at stagnation the electron and ion current
the y direction ~the Hall currents! equal zero, we have from
Eqs. ~49! and ~50! that h' j ex5Egx5Ex . ~We setEgx5Ex
since we neglect density gradients in thex direction.! Since
the magnetic field at the edge of the pinch is 3.43107 G,
characteristic values ofvcet1 , vcet2;1 – 2. Using Eqs.
~39!, ~42!, ~50!, and ~51! we estimate that h';2
31024 V cm, which is three times as resistive as roo
temperature stainless steel. The pinch resistance is;7 mV.
Since the current at stagnation is 17 MA, the resistive vo
age drop across the pinch is 105 V. Similar calculations sug-
gest that the resistance during most of the wire-array imp
sion is also on the order of a few milliohms. Assuming th
these estimates adequately describe a real pinch, it app
that the performance of theZ accelerator is not significantly
affected by the pinch resistance, since it is much less than
pinch impedance~;0.1–0.4V! due to inductive effects.
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